OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 9765–9779

The correlation confocal microscope

D.S. Simon and A.V. Sergienko  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 9765-9779 (2010)
http://dx.doi.org/10.1364/OE.18.009765


View Full Text Article

Enhanced HTML    Acrobat PDF (813 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new type of confocal microscope is described which makes use of intensity correlations between spatially correlated beams of light. It is shown that this apparatus leads to significantly improved transverse resolution.

© 2010 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Microscopy

History
Original Manuscript: February 11, 2010
Revised Manuscript: March 30, 2010
Manuscript Accepted: April 5, 2010
Published: April 26, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
D. S. Simon and A. V. Sergienko, "The correlation confocal microscope," Opt. Express 18, 9765-9779 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-9765


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Minsky, U.S. Patent # 3013467, Microscopy Apparatus (1957).
  2. M. Minsky, “Memoir on Inventing the Confocal Scanning Microscope,” Scanning 10, 128–138 (1988). [CrossRef]
  3. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum Press, 1985).
  4. K. S. Schmitz, An Introduction to Dynamic Light Scattering By Macromolecules (Academic Press, 1990).
  5. B. J. Berne, and R. J. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics, (Dover Publications, 2000). (Reprint of 1976 Wiley edition.)
  6. D. Magde, E. Elson, and W. W. Webb, “Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972). [CrossRef]
  7. W. W. Webb, “Fluorescence Correlation Spectroscopy: Inception, Biophysical Experimentations, and Prospectus,” Appl. Opt. 40, 3969–3983 (2001). [CrossRef]
  8. W. Denk, J. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  9. W. Denk, and K. Svoboda, “Photon Upmanship: Why Multiphoton Imaging is More than a Gimmick,” Neuron 18, 351–357 (1997). [CrossRef] [PubMed]
  10. R. Hanbury Brown, and R. Q. Twiss, “A Test of a New Type of Stellar Interferometer on Sirius,” Nature 178, 1046–1048 (1956). [CrossRef]
  11. R. Hanbury Brown, and R. Q. Twiss, “Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation,” Proc. R. Soc. Lond. A Math. Phys. Sci. 242, 300–324 (1957). [CrossRef]
  12. R. Hanbury Brown, and R. Q. Twiss, “Interferometry of the intensity fluctuations in light. II. An experimental test of the theory for partially coherent light,” Proc. R. Soc. Lond. A Math. Phys. Sci. 243, 291–319 (1958). [CrossRef]
  13. A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ellipsometric Measurements Using Photon Pairs Generated by Parametric Down-Conversion,” Opt. Lett. 26, 1717–1719 (2001). [CrossRef]
  14. A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-Photon Ellipsometry,” J. Opt. Soc. Am. B 19, 656–662 (2002). [CrossRef]
  15. K. C. Toussaint, G. Di Giuseppe, K. J. Bycenski, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum Ellipsometry Using Correlated Photon Beams,” Phys. Rev. A 70, 023801 (2004). [CrossRef]
  16. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical Imaging by Means of Two-Photon Quantum Entanglement,” Phys. Rev. A 52, R3429–R3432 (1995). [CrossRef] [PubMed]
  17. J. D. Franson, “Nonlocal Cancellation of Dispersion,” Phys. Rev. A 45, 3126–3132 (1992). [CrossRef] [PubMed]
  18. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992). [CrossRef] [PubMed]
  19. O. Minaeva, C. Bonato, B. E. A. Saleh, D. S. Simon, and A. V. Sergienko, “Odd- and Even-Order Dispersion Cancellation in Quantum Interferometry,” Phys. Rev. Lett. 102, 100504 (2009). [CrossRef]
  20. C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-Order Aberration Cancellation in Quantum Interferometry,” Phys. Rev. Lett. 101, 233603 (2008). [CrossRef] [PubMed]
  21. C. Bonato, D. S. Simon, P. Villoresi, and A. V. Sergienko, “Multiparameter Entangled-state Engineering using Adaptive Optics,” Phys. Rev. A 79, 062304 (2009). [CrossRef]
  22. D. S. Simon, and A. V. Sergienko, “Spatial-dispersion cancellation in quantum interferometry,” Phys. Rev. A 80, 053813 (2009). [CrossRef]
  23. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-Photon Coincidence Imaging with a Classical Source,” Phys. Rev. Lett. 89, 113601 (2002). [CrossRef] [PubMed]
  24. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and Classical Coincidence Imaging,” Phys. Rev. Lett. 92, 033601 (2004). [CrossRef] [PubMed]
  25. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004). [CrossRef]
  26. Y. J. Cai, and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 056607 (2005). [CrossRef]
  27. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94, 063601 (2005). [CrossRef] [PubMed]
  28. G. Scarcelli, V. Berardi, and Y. H. Shih, “Can Two-Photon Correlation of Chaotic Light Be Considered as Correlation of Intensity Fluctuations?” Phys. Rev. Lett. 96, 063602 (2006). [CrossRef] [PubMed]
  29. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94, 183602 (2005). [CrossRef] [PubMed]
  30. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005). [CrossRef] [PubMed]
  31. A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, “Quantum microscopy using photon correlations,” J. Opt. B 6, S575–S582 (2004).
  32. R. H. Webb, “Confocal Optical Microscopy,” Rep. Prog. Phys. 59, 427–471 (1996). [CrossRef]
  33. J. C. Mertz, Introduction to Optical Microscopy (Roberts and Company Publishers, 2009).
  34. P. F. Carcia, R. H. French, M. H. Reilly, M. F. Lemon, and D. J. Jones, “Optical superlattices-a strategy for designing phase-shift masks for photolithographys at 248 and 193 nm: Application to AIN/CrN,” Appl. Phys. Lett. 70, 2371–2372 (1997). [CrossRef]
  35. P.F. Carcia, G. Hughes, R.H. French, C. Torardi, G. Reynolds, L. Dieu, “Thin Films for Phase-Shift Masks”, Vacuum and Thin Film, Sept. 14–21, 1–10 (1999)
  36. K. W. C. Chan, M. N. O. Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18, 5562–5573 (2010). [CrossRef] [PubMed]
  37. Y. Bai, and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007). [CrossRef]
  38. L.-H. Ou, and L.-M. Kuang, “Ghost imaging with third-order correlated thermal light,” J. Phys. At. Mol. Opt. Phys. 40, 1833–1844 (2007). [CrossRef]
  39. D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nthorder intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008). [CrossRef]
  40. I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown-Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008). [CrossRef]
  41. Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, and L.-A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009). [CrossRef]
  42. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-Order Thermal Ghost Imaging,” Opt. Lett. 34, 3343–3345 (2009). [CrossRef]
  43. T. M. Cover, and J. A. Thomas, Elements of Information Theory (Wiley, 1999).
  44. K. D. Mielenz, “Algorithms for Fresnel Diffraction at Rectangular and Circular Apertures,” J. Res. Natl. Inst. Stand. Technol. 103, 497–508 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited