OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 9780–9790

Plasmonic resonances in optomagnetic metamaterials based on double dot arrays.

Vasyl G. Kravets, Fred Schedin, Shaun Taylor, David Viita, and Alexander N. Grigorenko  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 9780-9790 (2010)
http://dx.doi.org/10.1364/OE.18.009780


View Full Text Article

Enhanced HTML    Acrobat PDF (12503 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study optical properties of optomagnetic metamaterials produced by regular arrays of double gold dots (nanopillars). Using combined data of spectroscopic ellipsometry, transmission and reflection measurements, we identify localized plasmon resonances of a nanopillar pair and measure their dependences on dot sizes. We formulate the necessary condition at which an effective field theory can be applied to describe optical properties of a composite medium and employ interferometry to measure phase shifts for our samples. A negative phase shift for transmitted green light coupled to an antisymmetric magnetic mode of a double-dot array is observed.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: January 28, 2010
Revised Manuscript: March 27, 2010
Manuscript Accepted: April 14, 2010
Published: April 26, 2010

Citation
Vasyl G. Kravets, Fred Schedin, Shaun Taylor, David Viita, and Alexander N. Grigorenko, "Plasmonic resonances in optomagnetic metamaterials based on double dot arrays.," Opt. Express 18, 9780-9790 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-9780


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  2. A. Schuster, An Introduction to the Theory of Optics (E. Arnold, 1904).
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  7. M. C. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001). [CrossRef] [PubMed]
  8. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, §77 (Pergamon Press, 1984).
  9. L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66(15), 155411 (2002). [CrossRef]
  10. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires,” J. Nonlinear Opt. Phys. Mater. 11(1), 65–74 (2002). [CrossRef]
  11. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  12. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  13. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13(13), 4922–4930 (2005). [CrossRef] [PubMed]
  14. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005). [CrossRef] [PubMed]
  15. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006). [CrossRef] [PubMed]
  16. A. N. Grigorenko, “Negative refractive index in artificial metamaterials,” Opt. Lett. 31(16), 2483–2485 (2006). [CrossRef] [PubMed]
  17. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  18. J. Pendry, “Optics: Positively negative,” Nature 423(6935), 22–23 (2003). [CrossRef] [PubMed]
  19. D. V. Sivukhin, Optics (Nauka, 1985). [PubMed]
  20. V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Usp. Fiz. Nauk. 176(10), 1051–1068 (2006). [CrossRef]
  21. D. V. Sivukhin, “Theory of elliptical polarization of light reflected from isotropic media,” Sov. Phys. JETP 3, 269–274 (1956).
  22. O. S. Heavens, “Optical properties of thin films,” Rep. Prog. Phys. 23(1), 249–262 (1982).
  23. H. Schopper, “Die untersuchung diinner absorbierender schichten mit hilfe der absoluten phase,” Z. Phys. 130(5), 565–584 (1951). [CrossRef]
  24. H. Schopper, “Die bestimmung der optischen konstanten und der schichtdicke beliebig dicker schichten mit hilfe der absoluten phase,” Z. Phys. 131(2), 215–224 (1952). [CrossRef]
  25. H. Schopper, “Zur optik diinner doppelbrechender und dichroitischer schichten,” Z. Phys. 132(2), 146–170 (1952). [CrossRef]
  26. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  27. A. N. Grigorenko, “Reply to comment on “Negative refractive index in artificial metamaterials”,” Opt. Lett. 32(11), 1512–1514 (2007). [CrossRef] [PubMed]
  28. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). [CrossRef] [PubMed]
  29. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007). [CrossRef] [PubMed]
  30. R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  31. C. M. Herzinger, D. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998). [CrossRef]
  32. L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media §103, problem 1 (Oxford, Pergamon Press, 1984).
  33. M. Born, and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1980).
  34. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008). [CrossRef] [PubMed]
  35. X. Zhang, M. Davanço, Y. Urzhumov, G. Shvets, and S. R. Forrest, “From scattering parameters to Snell’s law: a subwavelength near-infrared negative-index metamaterial,” Phys. Rev. Lett. 101(26), 267401 (2008). [CrossRef] [PubMed]
  36. W. J. Padilla, D. R. Smith, and D. Basov, “Spectroscopy of metamaterials from infrared to optical frequencies,” J. Opt. Soc. Am. B 23(3), 404–414 (2006). [CrossRef]
  37. C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron . (2009).
  38. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-anisotropic Media (Artech House, 1994).
  39. S. A. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  40. J. A. Kong, The Theory of Electromagnetic Waves (Wiley, 1975).
  41. F. Abelès, “Remarques sur les proprietes des lames minces inhomogenes,” J. Phys. Radium 17(3), 190–193 (1956). [CrossRef]
  42. Th. Koschny, P. Markoš, E. Economou, D. Smith, D. Vier, and C. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005). [CrossRef]
  43. J. E. Sipe and J. Van Kranendonk, “Macroscopic electromagnetic theory of resonant dielectrics,” Phys. Rev. A 9(5), 1806–1822 (1974). [CrossRef]
  44. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003). [CrossRef]
  45. A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009). [CrossRef] [PubMed]
  46. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008). [CrossRef]
  47. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008). [CrossRef]
  48. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21(1), 173–187 (1974). [CrossRef]
  49. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited