OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 9791–9808

Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 9791-9808 (2010)
http://dx.doi.org/10.1364/OE.18.009791


View Full Text Article

Enhanced HTML    Acrobat PDF (1595 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10Gb/s downstream and 6Gb/s upstream over 40km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23Gb/s downstream and 8Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4080) Fiber optics and optical communications : Modulation
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 21, 2009
Revised Manuscript: April 8, 2010
Manuscript Accepted: April 20, 2010
Published: April 26, 2010

Citation
J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, "Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators," Opt. Express 18, 9791-9808 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-9791


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008). [CrossRef]
  2. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001). [CrossRef]
  3. S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 10(9), 1337–1339 (1998). [CrossRef]
  4. D. K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001). [CrossRef]
  5. H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol. 21(11), 2546–2556 (2003). [CrossRef]
  6. W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Optical transceiver employing an RSOA with feed-forward current injection,” OFC/NFOEC, (Anaheim, CA, USA, 2007), Paper OTuH1.
  7. W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical networking unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” OFC/NFOEC, (Anaheim, CA, USA, 2003), Paper TuR2.
  8. N. Deng, C.-K. Chan, and L.-K. Chen, “A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation,” Opt. Fiber Technol. 13(1), 18–21 (2007). [CrossRef]
  9. J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006). [CrossRef]
  10. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009). [CrossRef]
  11. J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9012 . [CrossRef] [PubMed]
  12. R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009). [CrossRef] [PubMed]
  13. J. L. Wei, A. Hamié and J. M. Tang, “Optimization and comparison of the transmission performance of RSOA/SOA intensity-modulated optical OFDM signals for WDM-PONs,” OFC/NFOEC, (San Diego, California, USA, March 21–25, 2010). Paper JThA53.
  14. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-25-20427 . [CrossRef] [PubMed]
  15. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei and J. M. Tang, “ Colourless real-time optical OFDM end-to-end transmission at 7.5Gb/s over 25km SSMF using 1GHz RSOAs for WDM-PONs,” OFC/NFOEC, (San Diego, California, USA, March 21–25, 2010). Paper OMS4.
  16. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008). [CrossRef]
  17. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.
  18. C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-16-12096 . [CrossRef] [PubMed]
  19. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Demonstration of signal remodulation long reach carrier distributed passive optical network using OFDM-QAM signal,” in ECOC (Vienna, Austria, 2009), paper 8.5.2.
  20. P. Gysel and R. K. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8(4), 561–567 (1990). [CrossRef]
  21. C. Arellano, K.-D. Langer, and J. Prat, “Reflection and multiple Rayleigh backscattering in WDM single-fiber loopback access networks,” J. Lightwave Technol. 27(1), 12–18 (2009). [CrossRef]
  22. J. Ko, S. Kim, J. Lee, S. Won, Y. S. Kim, and J. Jeong, “Estimation of performance degradation of bidirectional WDM transmission systems due to Rayleigh backscattering and ASE noises using numerical and analytical models,” J. Lightwave Technol. 21(4), 938–946 (2003). [CrossRef]
  23. G. P. Agrawal, Fibre-Optic Communication Systems, (Wiley, 1997).
  24. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007). [CrossRef]
  25. X. Tian, A. P. Freundorfer, and L. Roy, “Noise analysis of a photoreceiver using a P-I-N and GaAs HBT distributed amplifier combination,” IEEE Microw. Wirel. Compon. Lett. 13(6), 208–210 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited