OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 9831–9839

Downhill simplex algorithm based approach to holey fiber design for tunable fiber parametric wavelength converters

Sheng Cui, Deming Liu, Shaohua Yu, Benxiong Huang, Changjian Ke, Minming Zhang, and Chen Liu  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 9831-9839 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1789 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new approach to the design of the holey fibers that have ultra-high nonlinearity and dispersion properties optimized for tunable fiber parametric wavelength converters based on degenerated four wave mixing. This hybrid approach combines downhill simplex algorithms with four wave mixing modeling. Exploiting the relations between fiber properties and the converter’s characteristics, this method is not only much faster than other methods proposed before but also enables an inverse design of the holey fibers according to the pre-set device characteristics, like conversion gain, tuning range, fiber length and pump power. We then investigate the sensitivity of these characteristics to the small variations in the fiber structural parameters and find adjusting the pump power can to some extent mitigate the impact of the fabrication errors.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 15, 2009
Revised Manuscript: March 15, 2010
Manuscript Accepted: March 29, 2010
Published: April 27, 2010

Sheng Cui, Deming Liu, Shaohua Yu, Benxiong Huang, Changjian Ke, Minming Zhang, and Chen Liu, "Downhill simplex algorithm based approach to holey fiber design for tunable fiber parametric wavelength converters," Opt. Express 18, 9831-9839 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996). [CrossRef]
  2. R. W. McKerracher, J. L. Blows, and C. de Sterke, “Wavelength conversion bandwidth in fiber based optical parametric amplifiers,” Opt. Express 11(9), 1002–1007 (2003). [CrossRef] [PubMed]
  3. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001), Chap. 10.
  4. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  5. K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007). [CrossRef]
  6. M. L. F. Abbade, J. D. Marconi, R. L. Cassiolato, V. Ishizuca, I. E. Fonseca, and H. L. Fragnito, “Field-Trial Evaluation of Cross-Layer Effect Caused by All-Optical Wavelength Converters on IP Network Applications,” J. Lightwave Technol. 27(12), 1816–1826 (2009). [CrossRef]
  7. K. K. Chow, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber,” Opt. Express 15(23), 15418–15423 (2007). [CrossRef] [PubMed]
  8. D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  9. J. J. Miret, E. Silvestre, and P. Andrés, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express 17(11), 9197–9203 (2009). [CrossRef] [PubMed]
  10. J. Kaňka, “Design of photonic crystal fibers with highly nonlinear glasses for four-wave-mixing based telecom applications,” Opt. Express 16(25), 20395–20408 (2008). [CrossRef] [PubMed]
  11. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005). [CrossRef] [PubMed]
  12. W. Q. Zhang, V. Shahraam Afshar, and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19312–19328 (2009).
  13. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead Simplex Method in low dimensions,” SIAM J. Optim. 9(1), 112–147 (1998). [CrossRef]
  14. S. Cui, D. Liu, Y. Wang, and F. Tu, “Method for effectively utilizing tunable one-pump fiber parametric wavelength converters as an enabling device for WDM routers,” Opt. Express 17(3), 1454–1465 (2009). [CrossRef] [PubMed]
  15. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996). [CrossRef] [PubMed]
  16. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-Wave Band Translation Between the Near-Infrared and Visible Spectral Ranges,” J. Lightwave Technol. 25(1), 58–66 (2007). [CrossRef]
  17. T. V. Andersen, K. M. Hilligsøe, C. K. Nielsen, J. Thøgersen, K. P. Hansen, S. Keiding, and J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Opt. Express 12(17), 4113–4122 (2004). [CrossRef] [PubMed]
  18. T.-L. Wu and C.-H. Chao, “A novel ultra-flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(1), 67–69 (2005). [CrossRef]
  19. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002). [CrossRef]
  20. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers II. Implementation and results,” J. Opt. Soc. Am. B 19(10), 2331–2340 (2002). [CrossRef]
  21. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998). [CrossRef]
  22. M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004). [CrossRef] [PubMed]
  23. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007). [CrossRef] [PubMed]
  24. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, ““Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE Sel. Top. Quantum Electron. 15(1), 103–113 (2009). [CrossRef]
  25. M. Westlund, H. Hansryd, P. A. Andrekson, and S. N. Knudsen, “Transparent wavelength conversion in fibre with 24nm pump tuning range,” Electron. Lett. 38(2), 85–86 (2002). [CrossRef]
  26. K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express 14(15), 6870–6878 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited