OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 9900–9908

Gain competition in dual wavelength quantum cascade lasers

Markus Geiser, Christian Pflügl, Alexey Belyanin, Qi Jie Wang, Nanfang Yu, Tadanaka Edamura, Masamichi Yamanishi, Hirofumi Kan, Milan Fischer, Andreas Wittmann, Jérôme Faist, and Federico Capasso  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 9900-9908 (2010)
http://dx.doi.org/10.1364/OE.18.009900


View Full Text Article

Enhanced HTML    Acrobat PDF (3515 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated dual wavelength mid-infrared quantum cascade lasers based on heterogeneous cascades. We found that due to gain competition laser action tends to start in higher order lateral modes. The mid-infrared mode with the lower threshold current reduces population inversion for the second laser with the higher threshold current due to stimulated emission. We developed a rate equation model to quantitatively describe mode interactions due to mutual gain depletion.

© 2010 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 19, 2010
Revised Manuscript: March 25, 2010
Manuscript Accepted: April 1, 2010
Published: April 27, 2010

Citation
Markus Geiser, Christian Pflügl, Alexey Belyanin, Qi Jie Wang, Nanfang Yu, Tadanaka Edamura, Masamichi Yamanishi, Hirofumi Kan, Milan Fischer, Andreas Wittmann, Jérôme Faist, and Federico Capasso, "Gain competition in dual wavelength quantum cascade lasers," Opt. Express 18, 9900-9908 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-9900


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009). [CrossRef]
  3. M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ~16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271 (2001). [CrossRef]
  4. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008). [CrossRef]
  5. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009). [CrossRef]
  6. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009). [CrossRef]
  7. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008). [CrossRef]
  8. C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001). [CrossRef]
  9. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006). [CrossRef]
  10. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009). [CrossRef]
  11. E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996). [CrossRef]
  12. C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65(4), 445 (1994). [CrossRef]
  13. N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003). [CrossRef] [PubMed]
  14. M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006). [CrossRef]
  15. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007). [CrossRef]
  16. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008). [CrossRef]
  17. C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008). [CrossRef]
  18. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002). [CrossRef]
  19. A. Belyanin, M. Troccoli, and F. Capasso, “Raman Injection and Inversionless Intersubband Lasers” in Intersubband Transitions in Quantum Structures, R. Paiella (McGraw-Hill Companies, 2006), chapter 6.3.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited