OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 9909–9921

Emission properties and photon statistics of a single quantum dot laser

S. Ritter, P. Gartner, C. Gies, and F. Jahnke  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 9909-9921 (2010)
http://dx.doi.org/10.1364/OE.18.009909


View Full Text Article

Enhanced HTML    Acrobat PDF (1572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical description for a single quantum-dot emitter in a microcavity is developed. We analyze for increasing steady-state pump rate the transition from the strong-coupling regime with photon antibunching to the weak-coupling regime with coherent emission. It is demonstrated how Coulomb interaction of excited carriers and excitation-induced dephasing can strongly modify the emission properties. Our theoretical investigations are based on a direct solution of the Liouville-von Neumann equation for the coupled carrier-photon system. We include multiple carrier excitations in the quantum dot, their Coulomb interaction, as well as excitation-induced dephasing and screening. Similarities and differences to atomic systems are discussed and results in the regime of recent experiments are interpreted.

© 2010 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(130.3990) Integrated optics : Micro-optical devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: January 20, 2010
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 25, 2010
Published: April 27, 2010

Citation
S. Ritter, P. Gartner, C. Gies, and F. Jahnke, "Emission properties and photon statistics of a single quantum dot laser," Opt. Express 18, 9909-9921 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-9909


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Meschede, H. Walter, and G. Muller, "One-atom maser," Phys. Rev. Lett. 54, 551-554 (1985). [CrossRef] [PubMed]
  2. K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, "Microlaser: A laser with one atome in an optical resonator," Phys. Rev. Lett. 73, 3375-3378 (1994). [CrossRef] [PubMed]
  3. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003). [CrossRef] [PubMed]
  4. H. Carmichael and L. A. Orozco, "Quantum optics: Single atom lases orderly light," Nature 425, 246-247 (2003). [CrossRef] [PubMed]
  5. O. Benson and Y. Yamamoto, "Master-equation model of a single-quantum-dot microsphere laser," Phys. Rev. A 59, 4756-4763 (1999). [CrossRef]
  6. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000). [CrossRef] [PubMed]
  7. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  8. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004). [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  10. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005). [CrossRef]
  11. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006). [CrossRef]
  12. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  13. S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007). [CrossRef] [PubMed]
  14. Z. G. Xie, S. Gotzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007). [CrossRef] [PubMed]
  15. S. Reitzenstein, C. B¨ockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects inhigh-q micropillar cavities," Opt. Express 16, 4848-4857 (2008). [CrossRef] [PubMed]
  16. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, "Photonic crystal nanocavity laser with a single quantum dot gain," Opt. Express 17, 15975-15982 (2009). [CrossRef] [PubMed]
  17. Y. Mu and C. M. Savage, "One-atom lasers," Phys. Rev. A 46, 5944-5954 (1992). [CrossRef] [PubMed]
  18. A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, "Electronic structure and magneto-optics of self-assembled quantum dots," Phys. Rev. B 54, 5604-5608 (1996). [CrossRef]
  19. H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009). [CrossRef]
  20. P. Hawrylak, "Excitonic artificial atoms: Engineering optical properties of quantum dots," Phys. Rev. B 60, 5597-5608 (1999). [CrossRef]
  21. N. Baer, P. Gartner, and F. Jahnke, "Coulomb effects in semiconductor quantum dots," Eur. Phys. J. B 42, 231-237 (2004). [CrossRef]
  22. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009). [CrossRef]
  23. E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010). [CrossRef]
  24. H. J. Carmichael, Statistical Methods in Quantum Optics 1, (Springer, Berlin, 1998).
  25. T. Pellizzari and H. Ritsch, "Photon statistics of the three-level one-atom laser," J. Modern Opt. 41, 609-623 (1994). [CrossRef]
  26. A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, "Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys. Rev. A 70, 023814 (2004). [CrossRef]
  27. J. I. Perea, D. Porras, and C. Tejedor, "Dynamics of the excitations of a quantum dot in a microcavity," Phys. Rev. B 70, 115304 (2004). [CrossRef]
  28. P. R. Rice and H. J. Carmichael, "Photon statistics of cavity-QED lasers," Phys. Rev. A 50, 4318-4329 (1994). [CrossRef] [PubMed]
  29. W. A. Hugel, M. F. Heinrich, and M. Wegener, "Dephasing due to carrier-carrier scattering in 2d," Phys. Stat. Sol.(b) 221, 473-476 (2000). [CrossRef]
  30. H. Haug, "Coulomb quantum kinetics for semiconductor femtosecond spectroscopy," Phys. Stat. Sol.(b) 221, 179-188 (2000). [CrossRef]
  31. M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, "Excitation dependence of the homogeneous linewidths in quantum dots," Phys. Stat. Sol. (c)  3, 2393-2396 (2006). [CrossRef]
  32. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 041308(R) (2002). [CrossRef]
  33. M. Lorke, T. R. Nielsen, J. Seebeck, P. Gartner, and F. Jahnke, "Influence of carrier-carrier and electron-phonon correlations on optical absorption and gain in quantum-dot systems," Phys. Rev. B 73, 085324 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited