OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 9945–9954

Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation

Hongbin Yu, Guangya Zhou, Hui Min Leung, and Fook Siong Chau  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 9945-9954 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1870 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel liquid-filled lens design is presented. During fabrication, high precision single point diamond turning (SPDT) is introduced into standard soft lithography process to fabricate an aspherical surface constituting one end of lens. This enables the spherical aberration associated with the operation of the conventional liquid-filled lenses to be compensated for. Through flexibly optimizing this surface contour, it can be designed to work within particular working regions with improved optical quality. At the same time, the deformable elastic membrane is still adopted at the other end of the lens, thus preserving the high focal length tunability. This proof of concept and the performance of the proposed lens have been demonstrated using the lateral shearing interferometry experiment..

© 2010 OSA

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.4685) Optical devices : Optical microelectromechanical devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: October 16, 2009
Revised Manuscript: January 26, 2010
Manuscript Accepted: February 26, 2010
Published: April 28, 2010

Hongbin Yu, Guangya Zhou, Hui Min Leung, and Fook Siong Chau, "Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation," Opt. Express 18, 9945-9954 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Gross, Handbook of Optical Systems. Weiheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2005.
  2. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003). [CrossRef]
  3. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003). [CrossRef] [PubMed]
  4. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43(4), 783–787 (2004). [CrossRef] [PubMed]
  5. H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17(6), 4782–4790 (2009). [CrossRef] [PubMed]
  6. L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, “Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device,” Opt. Express 13(22), 9003–9013 (2005). [CrossRef] [PubMed]
  7. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004). [CrossRef] [PubMed]
  8. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004). [CrossRef]
  9. D. Y. Zhang, N. Justis, and Y. H. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29(24), 2855–2857 (2004). [CrossRef]
  10. W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21(5), 304–306 (2009). [CrossRef]
  11. F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008). [CrossRef] [PubMed]
  12. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18(10), 105017 (2008). [CrossRef]
  13. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84(21), 4194–4196 (2004). [CrossRef]
  14. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33(6), 548–550 (2008). [CrossRef] [PubMed]
  15. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng. 18(11), 115016 (2008). [CrossRef]
  16. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “Simple method for fabricating solid microlenses with different focal lengths,” IEEE Photon. Technol. Lett. 20(19), 1624–1626 (2008). [CrossRef]
  17. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008). [CrossRef] [PubMed]
  18. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998). [CrossRef]
  19. L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express 13(24), 9916–9921 (2005). [CrossRef] [PubMed]
  20. X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst. 17(5), 1210–1217 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited