OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 9976–9990

Electronically controlled coherent linear optical sampling for optical coherence tomography

Stefan Kray, Felix Spöler, Thomas Hellerer, and Heinrich Kurz  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 9976-9990 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3380 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electronically controlled coherent linear optical sampling for low coherence interferometry (LCI) and optical coherence tomography (OCT) is demonstrated, using two turn-key commercial mode-locked fiber lasers with synchronized repetition rates. This novel technique prevents repetition rate limitations present in previous implementations based on asynchronous optical sampling. Adjustable scanning ranges and scanning rates are realized within an interferometric setup by full electronic control of the mutual time delay of the two laser pulse trains. We implement this novel linear optical sampling scheme with broad spectral bandwidths for LCI, optical filter characterization and OCT imaging in two and three dimensions.

© 2010 OSA

OCIS Codes
(040.2840) Detectors : Heterodyne
(110.4500) Imaging systems : Optical coherence tomography
(140.4050) Lasers and laser optics : Mode-locked lasers
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Imaging Systems

Original Manuscript: February 22, 2010
Revised Manuscript: April 9, 2010
Manuscript Accepted: April 26, 2010
Published: April 28, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Stefan Kray, Felix Spöler, Thomas Hellerer, and Heinrich Kurz, "Electronically controlled coherent linear optical sampling for optical coherence tomography," Opt. Express 18, 9976-9990 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969). [CrossRef]
  2. F. E. Lytle, R. M. Parrish, and W. T. Barnes, “An introduction to time-resolved pump probe spectroscopy,” Appl. Spectrosc. 39(3), 444–451 (1985). [CrossRef]
  3. G. C. Cho, W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65(6), 764–766 (1990). [CrossRef] [PubMed]
  4. N. G. Chen and Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27(8), 607–609 (2002). [CrossRef]
  5. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner,” Appl. Opt. 42(22), 4606–4611 (2003). [CrossRef] [PubMed]
  6. R. A. McLaughlin, J. P. Williamson, M. J. Phillips, J. J. Armstrong, S. Becker, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway,” Opt. Express 16(22), 17521–17529 (2008). [CrossRef] [PubMed]
  7. T. Kanada and D. L. Franzen, “Optical waveform measurement by optical sampling with a mode-locked laser diode,” Opt. Lett. 11(1), 4–6 (1986). [CrossRef] [PubMed]
  8. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “Pump probe spectroscopy by asynchronous optical-sampling,” Appl. Spectrosc. 41(1), 2–4 (1987). [CrossRef]
  9. C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett. 30(11), 1405–1407 (2005). [CrossRef] [PubMed]
  10. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006). [CrossRef]
  11. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007). [CrossRef] [PubMed]
  12. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002). [CrossRef]
  13. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004). [CrossRef] [PubMed]
  14. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005). [CrossRef] [PubMed]
  15. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef] [PubMed]
  16. C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003). [CrossRef]
  17. S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001). [CrossRef]
  18. S. Kray, F. Spöler, M. Först, and H. Kurz, “Dual femtosecond laser multiheterodyne optical coherence tomography,” Opt. Lett. 33(18), 2092–2094 (2008). [CrossRef] [PubMed]
  19. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]
  20. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009). [CrossRef] [PubMed]
  21. B. L. Danielson and C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt. 26(14), 2836–2842 (1987). [CrossRef] [PubMed]
  22. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  23. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997). [CrossRef]
  24. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006). [CrossRef] [PubMed]
  25. F. Tauser, C. Rausch, J. H. Posthumus, and F. Lison, “Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers,” Proc. SPIE 6881, 68810O (2008). [CrossRef]
  26. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007). [CrossRef] [PubMed]
  27. S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34(13), 1970–1972 (2009). [CrossRef] [PubMed]
  28. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003). [CrossRef]
  29. S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D Appl. Phys. 35(8), R43–R59 (2002). [CrossRef]
  30. F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003). [CrossRef] [PubMed]
  31. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991). [CrossRef] [PubMed]
  32. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007). [CrossRef] [PubMed]
  33. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  34. G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis ,” J. Biomed. Opt. 3(1), 21–31 (1998). [CrossRef]
  35. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997). [CrossRef] [PubMed]
  36. U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3(3), 259–266 (1998). [CrossRef]
  37. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  38. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  39. G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 605–621 (1996). [CrossRef]
  40. P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2661 KB)     
» Media 2: AVI (500 KB)     
» Media 3: AVI (4140 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited