OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S2 — Jun. 21, 2010
  • pp: A192–A200

Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design

Takahiro Matsumoto and Makoto Tomita  »View Author Affiliations

Optics Express, Vol. 18, Issue S2, pp. A192-A200 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1476 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a selective emitter with high emissivity in the visible wavelength region and low emissivity in the infrared wavelength region, we reduced the infrared contribution to the blackbody radiation spectrum and shifted the peak emission to shorter wavelengths. We made precise measurements of thermal radiation loss. The conversion efficiency from input electric power to visible light radiation was quantitatively evaluated with high accuracy. Using the proposed selective emitter, the conversion efficiencies in excess of 95% could be produced. Our conclusions pave the way for the design of incandescent lamps with luminous efficiencies exceeding 400 lm/W.

© 2010 OSA

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(230.6080) Optical devices : Sources

ToC Category:
Radiative Transfer

Original Manuscript: March 26, 2010
Revised Manuscript: May 7, 2010
Manuscript Accepted: May 21, 2010
Published: June 7, 2010

Takahiro Matsumoto and Makoto Tomita, "Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design," Opt. Express 18, A192-A200 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Keefe, (2007). The nature of light. (see also http://www.ccri.edu/physics/keefe/light.htm ).
  2. D. L. Klipstein, (1996). The great internet light bulb book, part 1. (see also http://freespace. virgin.net/tom. baldwin/bulbguide.html ).
  3. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002). [CrossRef] [PubMed]
  4. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986). [CrossRef]
  5. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction,” Phys. Rev. B 37(18), 10795–10802 (1988). [CrossRef]
  6. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. II. Doped silicon: angular variation,” Phys. Rev. B 37(18), 10803–10813 (1988). [CrossRef]
  7. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009). [CrossRef]
  8. J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherence thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997). [CrossRef]
  9. S. Ingvarsson, L. Klein, Y. Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007). [CrossRef] [PubMed]
  10. F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004). [CrossRef]
  11. S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009). [CrossRef]
  12. H. Sai, Y. Kanamori, and H. Yugami, “High temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003). [CrossRef]
  13. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009). [CrossRef] [PubMed]
  14. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two dimensionally confined mode in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001). [CrossRef]
  15. I. Puscasu and W. L. Schaich, “Narrow-band tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008). [CrossRef]
  16. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008). [CrossRef]
  17. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002). [CrossRef]
  18. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000). [CrossRef]
  19. F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003). [CrossRef]
  20. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002). [CrossRef] [PubMed]
  21. J. H. Lee, W. Leung, T. G. Kim, K. Constant, and K. M. Ho, “Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating,” Opt. Express 16(12), 8742–8747 (2008). [CrossRef] [PubMed]
  22. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28(20), 1909–1911 (2003). [CrossRef] [PubMed]
  23. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ = 1.5 microm by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28(18), 1683–1685 (2003). [CrossRef] [PubMed]
  24. J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976). [CrossRef]
  25. J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977). [CrossRef]
  26. G. Zajac, G. B. Smith, and A. Ignatiev, “Refinement of solar absorbing black chrome microstructure and its relationship to optical degradation mechanism,” J. Appl. Phys. 51(10), 5544–5554 (1980). [CrossRef]
  27. A. Ignatiev, P. O’Neill, C. Doland, and G. Zajac, “Microstructure dependence of the optical properties of solar absorbing black chrome,” Appl. Phys. Lett. 34(1), 42–44 (1979). [CrossRef]
  28. T. Smith and J. Guild, “The C. I. E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932). [CrossRef]
  29. D. G. Fink, and H. W. Beaty, Standard Handbook for Electric Engineers, 11th Edition, McGraw-Hill, New York, 1978, p. 22.
  30. Magazine Online, (see also http://www.homelighting.com/article.cfm?intarticleID=880 ).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited