Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Phosphor-converted LED modeling by bidirectional photometric data

Open Access Open Access

Abstract

For the phosphor-converted light-emitting diodes (pcLEDs), the interaction of the illuminating energy with the phosphor would not just behave as a simple wavelength-converting phenomenon, but also a function of various combinations of illumination and viewing geometries. This paper presents a methodology to characterize the converting and scattering mechanisms of the phosphor layer in the pcLEDs by the measured bidirectional scattering distribution functions (BSDFs). A commercially available pcLED with conformal phosphor coating was used to examine the validity of the proposed model. The close agreement with the measurement illustrates that the proposed characterization opens new perspectives for phosphor-based conversion and scattering feature for white lighting uses.

©2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Phosphor-converted LED modeling using near-field chromatic luminance data

Shu-Li Hsiao, Neng-Chung Hu, and Hugo Cornelissen
Opt. Express 21(S2) A250-A261 (2013)

Power and photon budget of a remote phosphor LED module

Paula Acuña, Sven Leyre, Jan Audenaert, Youri Meuret, Geert Deconinck, and Peter Hanselaer
Opt. Express 22(S4) A1079-A1092 (2014)

An iterative model of diffuse illumination from bidirectional photometric data

Chung-Hao Tien and Chien-Hsiang Hung
Opt. Express 17(2) 723-732 (2009)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Photometric and geometric quantities in the polar coordinate system.
Fig. 2
Fig. 2 The normally incident illumination Pi B (λ) and the illumination Pfs B (λ) detected in the normal direction
Fig. 3
Fig. 3 The normally incident illumination Pi B (λ) and the illumination Pfe Y (λ) detected in the normal direction
Fig. 4
Fig. 4 The normally incident illumination Pi Y (λ) and the illumination Pfs Y (λ) detected in the normal direction
Fig. 5
Fig. 5 (a) Schematic measurement setup of BSDFs, (b) the measured angular spread functions of an available specimen.
Fig. 6
Fig. 6 The measured results of Pfs B (θt ,λ) and Pfe Y (θt ,λ) under normal illuminatio
Fig. 7
Fig. 7 The measured (a) ρfs B-B , (b) ρfe B-Y , and (c) ρfs Y-Y of the considered phosphor
Fig. 8
Fig. 8 The simulated (a) luminous intensity distribution and (b) angular CCT distribution

Tables (1)

Tables Icon

Table 1 Nomenclature

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

L ( x , y , θ t , ϕ t ) total radiance = L s ( x , y , θ t , ϕ t ) non-emitted radiance + L e ( x , y , θ t , ϕ t ) emitted radiance ,
L ( θ t , ϕ t ) = L f s B ( θ t , ϕ t ) + L f e Y ( θ t , ϕ t ) + L f s Y ( θ t , ϕ t ) = Ω i [ ( ρ f s B B + ρ f e B Y ) L i B ( θ i , ϕ i ) + ρ f s Y Y L i Y ( θ i , ϕ i ) ] cos θ i d ω i ,
L f s B ( θ t , ϕ t ) = Ω i ρ f s B B ( θ i , ϕ i , θ t , ϕ t ) L i B ( θ i , ϕ i ) cos θ i d ω i ,
ρ f s B B ( θ i , ϕ i , θ t , ϕ t ) = d L f s B ( θ t , ϕ t ) d E i B ( θ i , ϕ i ) = d L f s B ( θ t , ϕ t ) L i B ( θ i , ϕ i ) cos θ i d ω i .
ρ f s B B ( θ i , ϕ i , θ t , ϕ t ) { L i B ( θ i , ϕ i ) = Blue-light Region P i B ( θ i , ϕ i , λ ) d λ L f s B ( θ t , ϕ t ) = Blue-light Region P f s B ( θ t , ϕ t , λ ) d λ .
L f e Y ( θ t , ϕ t ) = Ω i ρ f e B Y ( θ i , ϕ i , θ t , ϕ t ) L i B ( θ i , ϕ i ) cos θ i d ω i .
ρ f e B Y ( θ i , ϕ i , θ t , ϕ t ) = d L f e Y ( θ t , ϕ t ) d E i B ( θ i , ϕ i ) = d L f e Y ( θ t , ϕ t ) L i B ( θ i , ϕ i ) cos θ i d ω i ,
ρ f e B Y ( θ i , ϕ i , θ t , ϕ t ) { L i B ( θ , ϕ ) = Blue-light Region P i B ( θ , ϕ , λ ) d λ L f e Y ( θ , ϕ ) = Yellow-light Region P f e Y ( θ , ϕ , λ ) d λ .
L f s Y ( θ t , ϕ t ) = Ω i ρ f s Y Y ( θ i , ϕ i , θ t , ϕ t ) L i Y ( θ i , ϕ i ) cos θ i d ω i ,
ρ f s Y Y ( θ i , ϕ i , θ t , ϕ t ) = d L f s Y ( θ t , ϕ t ) d E i Y ( θ i , ϕ i ) = d L f s Y ( θ t , ϕ t ) L i Y ( θ i , ϕ i ) cos θ i d ω i .
ρ f s Y Y ( θ i , ϕ i , θ t , ϕ t ) { L i Y ( θ , ϕ ) = Yellow-light Region P i Y ( θ , ϕ , λ ) d λ L f s Y ( θ , ϕ ) = Yellow-light Region P f s Y ( θ , ϕ , λ ) d λ .
ρ ( θ i , ϕ i , θ t , ϕ t ) = ρ f s B B ( θ i , ϕ i , θ t , ϕ t ) + ρ f e B Y ( θ i , ϕ i , θ t , ϕ t ) + ρ f s Y Y ( θ i , ϕ i , θ t , ϕ t ) ,
ρ ( θ i , ϕ i , θ t , ϕ t ) = ρ f s λ 0 λ 0 ( θ i , ϕ i , θ t , ϕ t ) + m ( ρ f e λ 0 λ m ( θ i , ϕ i , θ t , ϕ t ) + ρ f s λ m λ m ( θ i , ϕ i , θ t , ϕ t ) ) ,
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.