Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison and optimization of randomly textured surfaces in thin-film solar cells

Open Access Open Access

Abstract

Using rigorous diffraction theory we investigate the scattering properties of various random textures currently used for photon management in thin-film solar cells. We relate the haze and the angularly resolved scattering function of these cells to the enhancement of light absorption. A simple criterion is derived that provides an explanation why certain textures operate more beneficially than others. Using this criterion we propose a generic surface profile that outperforms the available substrates. This work facilitates the understanding of the effect of randomly textured surfaces and provides guidelines towards their optimization.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Approaching the Lambertian limit in randomly textured thin-film solar cells

Stephan Fahr, Thomas Kirchartz, Carsten Rockstuhl, and Falk Lederer
Opt. Express 19(S4) A865-A874 (2011)

Light trapping in thin-film solar cells with randomly rough and hybrid textures

Piotr Kowalczewski, Marco Liscidini, and Lucio Claudio Andreani
Opt. Express 21(S5) A808-A820 (2013)

Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer
Opt. Express 21(S3) A450-A459 (2013)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Topology of the various considered randomly textured surfaces. (a) the Jülich substrate, (b) the Neuchâtel substrate, (c) the commercial substrate Asahi-U, and (d) a generic topography as a result of optimization in this work. The sequence of layers of the cell is shown in (e).
Fig. 2
Fig. 2 (a) Haze for different substrates where the surface separates TCO and a medium whose refractive index n is subject to variation. (b) The ARS function for the different substrates if the adjacent medium has a refractive index of n = 4. Data is rigorously calculated at a wavelength of 633 nm. Lines are only guide to the eyes.
Fig. 3
Fig. 3 Absorption enhancement of a thin-film solar cell with different textured surfaces. Results for a wavelength of 633 nm are shown in (a) and for a wavelength of 720 nm in (b). The geometry of the solar cell is described in the main body of the text. Three different thicknesses for the a-Si:H layers were considered and the different quality factors A Int σ A 2 signify different substrates. The link between the quality factor and the substrate is shown in (b). The absorption enhancement at a wavelength of 633 nm is furthermore shown in (c) where it was assumed that the medium of the infinite half space into which the light is scattered is air. The lines in (a)–(c) are only guide to the eyes which connect the different data points. In (d) we finally show the results of the absorption enhancement depending on the merit criterion. The data points were generated by scaling the height of the Neuchâtel profile and evaluating the scattering response against air as the medium of the second infinite half space and its ability to enhance the absorption at 633 nm for a 250 nm a-Si:H thickness for each texture individually .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h a z e = lim r [ 0 π 0 2 π S r ( r , θ , ϕ ) d θ d ϕ S r ( r , 0 , 0 ) 0 π 0 2 π S r ( r , θ , ϕ ) d θ d ϕ ]
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved