OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A343–A356

Resource efficient plasmon-based 2D-photovoltaics with reflective support

Carl Hägglund and S. Peter Apell  »View Author Affiliations


Optics Express, Vol. 18, Issue S3, pp. A343-A356 (2010)
http://dx.doi.org/10.1364/OE.18.00A343


View Full Text Article

Enhanced HTML    Acrobat PDF (2086 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For ultrathin (~10 nm) nanocomposite films of plasmonic materials and semiconductors, the absorptance of normal incident light is typically limited to about 50%. However, through addition of a non-absorbing spacer with a highly reflective backside to such films, close to 100% absorptance can be achieved at a targeted wavelength. Here, a simple analytic model useful in the long wavelength limit is presented. It shows that the spectral response can largely be characterized in terms of two wavelengths, associated with the absorber layer itself and the reflective support, respectively. These parameters influence both absorptance peak position and shape. The model is employed to optimize the system towards broadband solar energy conversion, with the spectrally integrated plasmon induced semiconductor absorptance as a figure of merit. Geometries optimized in this regard are then evaluated in full finite element calculations which demonstrate conversion efficiencies of up to 64% of the Shockley-Queisser limit. This is achieved using only the equivalence of about 10 nanometer composite material, comprising Ag and a thin film solar cell layer of a-Si, CuInSe2 or the organic semiconductor MDMO-PPV. A potential for very resource efficient solar energy conversion based on plasmonics is thus demonstrated.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: June 1, 2010
Revised Manuscript: July 22, 2010
Manuscript Accepted: July 27, 2010
Published: August 4, 2010

Citation
Carl Hägglund and S. Peter Apell, "Resource efficient plasmon-based 2D-photovoltaics with reflective support," Opt. Express 18, A343-A356 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S3-A343


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Markvart, and L. Castaner, eds., Practical handbook of photovoltaics: fundamentals and applications (Elsevier Advanced Technology, New York 2003).
  2. H. J. Queisser, “Photovoltaic conversion at reduced dimensions,” Physica E 14(1-2), 1–10 (2002). [CrossRef]
  3. C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett., Article ASAP (DOI: 10.1021/nl101929j), http://pubs.acs.org/doi/abs/10.1021/nl101929j .
  4. E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009). [CrossRef]
  5. C. Hägglund and B. Kasemo, “Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits,” Opt. Express 17(14), 11944–11957 (2009). [CrossRef] [PubMed]
  6. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007). [CrossRef]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  8. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  9. H. A. Macleod, Thin-film optical filters (Institute of Physics, Bristol, 2001).
  10. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  11. M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B 63(7), 075203 (2001). [CrossRef]
  12. H. Piller, “Amorphous Silicon,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic press, New York, 1985), p. 571.
  13. H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liquid Cryst. 385(1), 233–239 (2002). [CrossRef]
  14. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, 2004).
  15. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008). [CrossRef]
  16. J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94(18), 181104 (2009). [CrossRef]
  17. J. Vlieger, “Reflection and transmission of light by a square nonpolar llattice,” Physica 64(1), 63–81 (1973). [CrossRef]
  18. Y. S. Jung, “Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions,” Thin Solid Films 467(1-2), 36–42 (2004). [CrossRef]
  19. M. W. Ribarsky, “Titanium Dioxide,” in Handbook of optical constants of solids(Academic Press, 1985), pp. 795–804.
  20. E. Moulin, P. Q. Luo, B. Pieters, J. Sukmanowski, J. Kirchhoff, W. Reetz, T. Muller, R. Carius, F. X. Royer, and H. Stiebig, “Photoresponse enhancement in the near infrared wavelength range of ultrathin amorphous silicon photosensitive devices by integration of silver nanoparticles,” Appl. Phys. Lett. 95(3), 033505 (2009). [CrossRef]
  21. NREL, “Reference Solar Spectral Irradiance: Air Mass 1.5,” (American Society for Testing and Materials, 2003), http://rredc.nrel.gov/solar/standards/am1.5/ASTMG173/ASTMG173.html .
  22. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008). [CrossRef]
  23. J. H. Weaver, and H. P. R. Frederikse, “Optical properties of selected elements,” in CRC Handbook of Chemistry and Physics, D. R. Lide, ed. (CRC Press, 2002).
  24. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961). [CrossRef]
  25. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004). [CrossRef]
  26. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008). [CrossRef] [PubMed]
  27. J. R. Bolton and M. D. Archer, “Requirements for ideal performance of photochemical and photovoltaic solar energy converters,” J. Phys. Chem. 94(21), 8028–8036 (1990). [CrossRef]
  28. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008). [CrossRef]
  29. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009). [CrossRef] [PubMed]
  30. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 34),” Prog. Photovoltaics 17(5), 320–326 (2009). [CrossRef]
  31. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited