OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A421–A431

Using autocloning effects to develop broad-bandwidth, omnidirectional antireflection structures for silicon solar cells

Y. C. Lee, S. C. Tseng, H. L Chen, C. C. Yu, W. L. Cheng, C. H. Du, and C. H. Lin  »View Author Affiliations

Optics Express, Vol. 18, Issue S3, pp. A421-A431 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (9822 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we used the autocloning effect on pyramid structures to develop broad-bandwidth, omnidirectional antireflection structures for silicon solar cells. The angular dependence of reflectance on several pyramid structures was systematically investigated. The deposition of three-layer autocloned films reduced the refractive index gap between air and silicon, resulting in an increase in the amount of transmitted light and a decrease in the total light escaping. The average reflectance decreased dramatically to ca. 2–3% at incident angles from 0 to 60° for both sub-wavelength– and micrometer–scale pyramid structures. The measured reflectance of the autocloned structure was less than 4% in the wavelength range from 400 to 1000 nm for incident angles from 0 to 60°. Therefore, the autocloning technique, combined with optical thin films and optical gradient structures, is a practical and compatible method for the fabrication of broad-bandwidth, omnidirectional antireflection structures on silicon solar cells.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy

ToC Category:
Thin Films

Original Manuscript: June 24, 2010
Revised Manuscript: August 12, 2010
Manuscript Accepted: August 13, 2010
Published: August 24, 2010

Y. C. Lee, S. C. Tseng, H. L Chen, C. C. Yu, W. L. Cheng, C. H. Du, and C. H. Lin, "Using autocloning effects to develop broad-bandwidth, omnidirectional antireflection structures for silicon solar cells," Opt. Express 18, A421-A431 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Hylton, A. R. Burgers, and W. C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells,” J. Electrochem. Soc. 151(6), G408–G427 (2004). [CrossRef]
  2. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005). [CrossRef]
  3. B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007). [CrossRef]
  4. M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites, Part B 35(2), 179–184 (2004). [CrossRef]
  5. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef]
  6. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008). [CrossRef]
  7. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008). [CrossRef]
  8. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristic,” Appl. Phys. Lett. 93(25), 251108 (2008). [CrossRef]
  9. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  10. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008). [CrossRef] [PubMed]
  11. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983). [CrossRef] [PubMed]
  12. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef]
  13. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007). [CrossRef]
  14. C. Y. Huang, H. Min Ku, and S. Chao, “Surface profile control of the autocloned photonic crystal by ion-beam-sputter deposition with radio-frequency-bias etching,” Appl. Opt. 48(1), 69–73 (2009). [CrossRef]
  15. T. H. Chang, S. H. Chen, C. C. Lee, and H. L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516(6), 1051–1055 (2008). [CrossRef]
  16. Y. Ohtera, K. Miura, and T. Kawashima, “Ge/SiO2 photonic crystal multichannel wavelength filters for short wave infrared wavelengths,” Jpn. J. Appl. Phys. 46(4A4A), 1511–1515 (2007). [CrossRef]
  17. Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25(2), 499–503 (2007). [CrossRef]
  18. H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited