OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S4 — Nov. 8, 2010
  • pp: A528–A535

Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell

Shu-Ju Tsai, Mihaela Ballarotto, Danilo B. Romero, Warren N. Herman, Hung-Chih Kan, and Raymond J. Phaneuf  »View Author Affiliations


Optics Express, Vol. 18, Issue S4, pp. A528-A535 (2010)
http://dx.doi.org/10.1364/OE.18.00A528


View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the effect of arrays of Au nanopillars of controlled size and spacing on the spectral response of a P3HT: PCBM bulk heterojunction solar cell. Prototype nanopillar-patterned devices have nearly the same overall power conversion efficiency as those without nanopillars. The patterned devices do show higher external quantum efficiency and calculated absorption in the wavelength range from approximately 640 nm to 720 nm, where the active layer is not very absorbing. The peak enhancement was approximately 60% at 675 nm. We find evidence that the corresponding resonance involves both localized particle plasmon excitation and multiple reflections/diffraction within the cavity formed by the electrodes. We explore the role of the attenuation coefficient of the active layer on the optical absorption of such an organic photovoltaic device.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.2770) Diffraction and gratings : Gratings
(160.0160) Materials : Materials
(160.4890) Materials : Organic materials
(160.5140) Materials : Photoconductive materials
(250.2080) Optoelectronics : Polymer active devices

ToC Category:
Photovoltaics

History
Original Manuscript: August 25, 2010
Revised Manuscript: September 19, 2010
Manuscript Accepted: September 20, 2010
Published: September 29, 2010

Citation
Shu-Ju Tsai, Mihaela Ballarotto, Danilo B. Romero, Warren N. Herman, Hung-Chih Kan, and Raymond J. Phaneuf, "Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell," Opt. Express 18, A528-A535 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S4-A528


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009). [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008). [CrossRef]
  4. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008). [CrossRef]
  5. V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009). [CrossRef]
  6. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  7. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]
  8. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010). [CrossRef]
  9. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  10. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  11. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009). [CrossRef]
  12. J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009). [CrossRef]
  13. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008). [CrossRef]
  14. T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008). [CrossRef]
  15. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000). [CrossRef]
  16. Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007). [CrossRef]
  17. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008). [CrossRef]
  18. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004). [CrossRef]
  19. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009). [CrossRef]
  20. H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009). [CrossRef]
  21. T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006). [CrossRef]
  22. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007). [CrossRef]
  23. P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002). [CrossRef]
  24. G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009). [CrossRef] [PubMed]
  25. I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004). [CrossRef]
  26. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  27. J. T. Rantala and A. H. O. Kärkkäinen, “Optical properties of spin-on deposited low temperature titanium oxide thin films,” Opt. Express 11(12), 1406–1410 (2003). [CrossRef] [PubMed]
  28. D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic Aluminum, ” in Handbook of Optical Constants of Solids, D. Palik, ed., (Academic Press, Orlando, 1985), pp. 369–406.
  29. K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  30. A. Neureuther, TEMPEST FDTD software developed by Univ. of California at Berkeley.
  31. P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited