OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S4 — Nov. 8, 2010
  • pp: A620–A630

Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics

Wenli Bai, Qiaoqiang Gan, Guofeng Song, Lianghui Chen, Zakya Kafafi, and Filbert Bartoli  »View Author Affiliations

Optics Express, Vol. 18, Issue S4, pp. A620-A630 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells. The physical mechanism and the mode distribution of the SRSPP excited in the cell device were analyzed, and reveal that the SRSPP-assisted broadband absorption enhancement peak could be tuned by tailoring the parameters of the nanopatterned metallic structure. Three-dimensional finite-difference time domain calculations show that this plasmonic structure can enhance the optical absorption of polymer-based photovoltaics by 39% to 112%, depending on the nature of the active layer (corresponding to an enhancement in short-circuit current density by 47% to 130%). These results are promising for the design of organic photovoltaics with enhanced performance.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: September 7, 2010
Revised Manuscript: September 30, 2010
Manuscript Accepted: October 8, 2010
Published: October 27, 2010

Wenli Bai, Qiaoqiang Gan, Guofeng Song, Lianghui Chen, Zakya Kafafi, and Filbert Bartoli, "Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics," Opt. Express 18, A620-A630 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Green, “Third generation photovoltaics: Solar cells for 2020 and beyond,” Physica E 14(1-2), 65–70 (2002). [CrossRef]
  2. M. A. Green, “Recent developments in photovoltaics,” Sol. Energy 76(1-3), 3–8 (2004). [CrossRef]
  3. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93(9), 1488–1491 (2009). [CrossRef]
  4. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress toward 20% efficiency in Cu(In,Ca)Se-2 polycrystalline thin-film solar cells,” Prog. Photovoltaics 7(4), 311–316 (1999). [CrossRef]
  5. A. Romeo, A. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12(23), 93–111 (2004). [CrossRef]
  6. P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature 425(6954), 158–162 (2003). [CrossRef] [PubMed]
  7. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005). [CrossRef]
  8. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design Rules for Donors in Bulk-Heterojunction Solar Cells - Towards 10% Energy-Conversion Efficiency,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 789–794 (2006). [CrossRef]
  9. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007). [CrossRef] [PubMed]
  10. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992). [CrossRef] [PubMed]
  11. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science 270(5243), 1789–1791 (1995). [CrossRef]
  12. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19(7), 1924–1945 (2004). [CrossRef]
  13. D. E. Markov, C. Tanase, P. W. M. Blom, and J. Wildeman, “Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives,” Phys. Rev. B 72(4), 045217 (2005). [CrossRef]
  14. P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton Diffusion Measurements in Poly(3-hexylthiophene,” Adv. Mater. (Deerfield Beach Fla.) 20(18), 3516–3520 (2008). [CrossRef]
  15. S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, and Y. Yang, “Highly efficient tandem polymer photovoltaic cells,” Adv. Mater. (Deerfield Beach Fla.) 22(3), 380–383 (2010). [CrossRef]
  16. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009). [CrossRef]
  17. M.-H. Chen, J. Hou, Z. Hong, G. Yang, S. Sista, L.-M. Chen, and Y. Yang, “Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions,” Adv. Mater. (Deerfield Beach Fla.) 21(42), 4238–4242 (2009). [CrossRef]
  18. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005). [CrossRef]
  19. F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. Debettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007). [CrossRef]
  20. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (Univ. New South Wales, 1998).
  21. V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72(1-4), 291–298 (2002). [CrossRef]
  22. H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 1087–1090 (2009). [CrossRef]
  23. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  24. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer: Berlin, 1988).
  25. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  26. V. M. Shalaev, and S. Kawata, Nanophotonics with surface plasmons (Elsevier, 2007).
  27. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000). [CrossRef]
  28. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519 (2004). [CrossRef]
  29. K. Tvingstedt, N.-K. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007). [CrossRef]
  30. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008). [CrossRef]
  31. D. S. Derkacs, H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  32. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  33. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  34. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008). [CrossRef]
  35. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008). [CrossRef]
  36. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef]
  37. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009). [CrossRef]
  38. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34(23), 3725–3727 (2009). [CrossRef] [PubMed]
  39. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010). [CrossRef]
  40. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010). [CrossRef] [PubMed]
  41. G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007). [CrossRef]
  42. H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical Constants of Conjugated Polymer/Fullerene Based Bulk-Heterojunction Organic Solar Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113 (2002). [CrossRef]
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press: Orlando, FL, 1985).
  44. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009). [CrossRef]
  45. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  46. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77(16), 161405 (2008). [CrossRef]
  47. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  48. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  49. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin film,” Phys. Rev. B 44(11), 5855–5872 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited