OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 10947–10955

Light induced patterning of poly(dimethylsiloxane) microstructures

Lisa Miccio, Melania Paturzo, Andrea Finizio, and Pietro Ferraro  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 10947-10955 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new method for direct patterning of Poly(dimethylsiloxane) (PDMS) microstructures is developed by taking advantage of photorefractive effect in a functionalized substrate. Here we show that when a x-cut Iron doped Lithium Niobate (LN) crystal is exposed to appropriate structured laser light, a charge density pattern builds-up in the crystal and a space charge field arise that is able to induce self-patterning of the PDMS liquid film deposited on its surface via the dielectrophoretic effects. Proper heating treatment allows to achieve polymeric linking process creating a solid and stable PDMS microstructures. The self-patterned structures replicate the illuminating light pattern. We show that 1D and 2D patterning of PDMS gratings can be achieved. This new soft-lithographic approach can pave the way for realizing PDMS micro-structures with high degree of flexibility that avoids the need of moulds fabrication.

© 2010 OSA

OCIS Codes
(160.5320) Materials : Photorefractive materials
(160.5470) Materials : Polymers
(220.3740) Optical design and fabrication : Lithography
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: February 16, 2010
Revised Manuscript: April 1, 2010
Manuscript Accepted: April 1, 2010
Published: May 10, 2010

Lisa Miccio, Melania Paturzo, Andrea Finizio, and Pietro Ferraro, "Light induced patterning of poly(dimethylsiloxane) microstructures," Opt. Express 18, 10947-10955 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000). [CrossRef]
  2. K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494 (2004). [CrossRef] [PubMed]
  3. Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004). [CrossRef]
  4. T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000). [CrossRef]
  5. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003). [CrossRef] [PubMed]
  6. K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13(4), 568–575 (2004). [CrossRef]
  7. A. Pawlowski, A. Sayah, and M. A. M. Gijs, “Precision poly-(dimethyl siloxane) masking technology for high-resolution powder blasting,” J. Microelectromech. Syst. 14(3), 619–624 (2005). [CrossRef]
  8. J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002). [CrossRef]
  9. W. R. Childs and R. G. Nuzzo, “Decal transfer microlithography: a new soft-lithographic patterning method,” J. Am. Chem. Soc. 124(45), 13583–13596 (2002). [CrossRef] [PubMed]
  10. W. R. Childs and R. G. Nuzzo, “Patterning of Thin-Film Microstructures on Non-Planar Substrate Surfaces Using Decal Transfer Lithography,” Adv. Mater. 16(15), 1323–1327 (2004). [CrossRef]
  11. W. R. Childs and R. G. Nuzzo, “Large-area patterning of coinage-metal thin films using decal transfer lithography,” Langmuir 21(1), 195–202 (2005). [CrossRef]
  12. A. L. Thangawng, M. A. Swartz, M. R. Glucksberg, and R. S. Ruoff, “Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning,” Small 3(1), 132–138 (2007). [CrossRef] [PubMed]
  13. F. Stellacci, “Towards Industrial-Scale Molecular Nanolithography,” Adv. Funct. Mater. 16(1), 15–16 (2006). [CrossRef]
  14. Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004). [CrossRef]
  15. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003). [CrossRef]
  16. A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004). [CrossRef] [PubMed]
  17. J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17(14), 11739–11746 (2009). [CrossRef] [PubMed]
  18. W. C. Chuang, C. K. Chao, and C.-T. Ho, “Fabrication of high-resolution periodical structure on polymer waveguides using a replication process,” Opt. Express 15(14), 8649–8659 (2007). [CrossRef] [PubMed]
  19. P. Björk, S. Holmström, and O. Inganäs, “Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer,” Small 2(8-9), 1068–1074 (2006). [CrossRef] [PubMed]
  20. S. Grilli, V. Vespini, and P. Ferraro, “Surface-charge lithography for direct PDMS micro-patterning,” Langmuir 24(23), 13262–13265 (2008). [CrossRef] [PubMed]
  21. P. Ferraro, S. Grilli, L. Miccio, and V. Vespini, “Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets,” Appl. Phys. Lett. 92(21), 213107 (2008). [CrossRef]
  22. S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. 19(7), 074008 (2008). [CrossRef]
  23. F. Argullo-Lopez, G. F. Calvo, and M. Carrascosa, “Fundamentals of Photorefractive Phenomena” in Photorefractive materials and their applications I, P. Gunter and J. P. Huignard eds. (Springer 2006) pp 43–82.
  24. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997). [CrossRef]
  25. H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16(4), 2646–2652 (2008). [CrossRef] [PubMed]
  26. X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009). [CrossRef] [PubMed]
  27. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007). [CrossRef]
  28. M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron-doped lithium niobate crystals by application of extremely large external electric fields,” J. Opt. Soc. Am. B 20(8), 1643–1648 (2003). [CrossRef]
  29. P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,” Appl. Phys. Lett. 85(14), 2709–2711 (2004). [CrossRef]
  30. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007). [CrossRef]
  31. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited