OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 10956–10962

Defect solitons in two-dimensional optical lattices

W. H. Chen, X. Zhu, T. W. Wu, and R. H. Li  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 10956-10962 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the existence and stability of solitons in a defect embedded in a square optical lattice based on a photorefractive crystal with focusing saturable nonlinearity. These solitons exist in different bandgaps due to the change of defect intensity. For a positive defect, the solitons only exist in the semi-infinite gap and can be stable in the low power region but not the high power region. For a negative defect, the solitons can exist not only in the semi-infinite gap, but also in the first gap. With increasing the defect depth, these solitons are stable within a moderate power region in the first gap while unstable in the entire semi-infinite gap.

© 2010 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: February 26, 2010
Revised Manuscript: April 30, 2010
Manuscript Accepted: April 30, 2010
Published: May 10, 2010

W. H. Chen, X. Zhu, T. W. Wu, and R. H. Li, "Defect solitons in two-dimensional optical lattices," Opt. Express 18, 10956-10962 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003). [CrossRef] [PubMed]
  2. M. J. Ablowitz, B. Ilan, E. Schonbrun, and R. Piestun, “Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 035601 (2006). [CrossRef] [PubMed]
  3. W. H. Chen, Y. J. He, and H. Z. Wang, “Defect superlattice solitons,” Opt. Express 15(22), 14498–14503 (2007). [CrossRef] [PubMed]
  4. J. Wang and J. Yang, “Families of vortex solitons in periodic media,” Phys. Rev. A 77(3), 033834 (2008). [CrossRef]
  5. J. Yang and Z. Chen, “Defect solitons in photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 026609 (2006). [CrossRef] [PubMed]
  6. Y. S. Kivshar, “Self-localization in arrays of defocusing waveguides,” Opt. Lett. 18(14), 1147–1149 (1993). [CrossRef] [PubMed]
  7. C. Lou, X. Wang, J. Xu, Z. Chen, and J. Yang, “Nonlinear spectrum reshaping and gap-soliton-train trapping in optically induced photonic structures,” Phys. Rev. Lett. 98(21), 213903 (2007). [CrossRef] [PubMed]
  8. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96(7), 073901 (2006). [CrossRef] [PubMed]
  9. W. Chen, Y. He, and H. Wang, “Surface defect superlattice solitons,” J. Opt. Soc. Am. B 24(10), 2584–2588 (2007). [CrossRef]
  10. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003). [CrossRef] [PubMed]
  11. Z. Chen and K. McCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27(22), 2019–2021 (2002). [CrossRef]
  12. Y. V. Kartashov, V. Vysloukh, and L. Torner, “Soliton trains in photonic lattices,” Opt. Express 12(13), 2831–2837 (2004). [CrossRef] [PubMed]
  13. J. Yang and Z. H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. 28(21), 2094–2096 (2003). [CrossRef] [PubMed]
  14. O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007). [CrossRef] [PubMed]
  15. L. Tang, C. Lou, X. Wang, D. Song, X. Chen, J. Xu, Z. Chen, H. Susanto, K. Law, and P. G. Kevrekidis, “Observation of dipole-like gap solitons in self-defocusing waveguide lattices,” Opt. Lett. 32(20), 3011–3013 (2007). [CrossRef] [PubMed]
  16. X. Wang, A. Bezryadina, Z. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98(12), 123903 (2007). [CrossRef] [PubMed]
  17. J. Wang, J. Yang, and Z. Chen, “Two-dimensional defect modes in optically induced photonic lattices,” Phys. Rev. A 76(1), 013828 (2007). [CrossRef]
  18. I. Makasyuk, Z. Chen, and J. Yang, “Band-gap guidance in optically induced photonic lattices with a negative defect,” Phys. Rev. Lett. 96(22), 223903 (2006). [CrossRef] [PubMed]
  19. A. Szameit, Y. V. Kartashov, M. Heinrich, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, F. Lederer, V. A. Vysloukh, and L. Torner, “Observation of two-dimensional defect surface solitons,” Opt. Lett. 34(6), 797–799 (2009). [CrossRef] [PubMed]
  20. J. Yang and T. I. Lakoba, “Universally-Convergent Squared-Operator Iteration Methods for Solitary Waves in General Nonlinear Wave Equations,” Stud. Appl. Math. 118(2), 153–197 (2007). [CrossRef]
  21. J. Yang, “Iteration methods for stability spectra of solitary waves,” J. Comput. Phys. 227(14), 6862–6876 (2008). [CrossRef]
  22. J. Yang, “Newton-conjugate gradient methods for solitary wave computations,” J. Comput. Phys. 228(18), 7007–7024 (2009). [CrossRef]
  23. Y. Li, W. Pang, Y. Chen, Z. Yu, J. Zhou, and H. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited