OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 10973–10984

Analysis of liquid-to-solid coupling and other performance parameters for microfluidically reconfigurable photonic systems

Erica E. Jung, Aram J. Chung, and David Erickson  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 10973-10984 (2010)
http://dx.doi.org/10.1364/OE.18.010973


View Full Text Article

Enhanced HTML    Acrobat PDF (1399 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we analytically investigate the coupling of light from liquid-core waveguides to conventional solid-core waveguides and a series of other optical properties of liquid waveguides in order to gauge the practicality of such a system for use in microfluidically reconfigurable photonic systems. A finite element model of the system was constructed and relevant properties such as mode field diameter, attenuation, bending loss, and efficiency of evanescent and end-fire coupling were investigated as a function of the liquid waveguide Peclet number and the relative difference in refractive index. For pure liquid systems we show that the mode field diameter decreases monotonically with increasing Peclet number and that bending losses could be significantly reduced by increasing the Peclet number. More critically, we observed irreversible evanescent coupling, in which the light coupled in the solid waveguide is entrapped within the solid rather than coupled back into the liquid waveguide. This effect was caused by the lengthwise variation in the propagation constant of the liquid core due to downstream diffusion. We demonstrate that coupling efficiencies as high as 84% can be obtained for fluid based end-fire coupling by taking advantage of the tunable mode field diameter. By developing techniques for coupling light between liquid and solid states we hope to be able to overcome the drawbacks of solid waveguide systems (e.g. unchangeable structure and properties) and liquid waveguide systems (e.g. diversion and attenuation) yielding a new paradigm for reconfigurable photonics.

© 2010 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 4, 2010
Revised Manuscript: April 30, 2010
Manuscript Accepted: May 4, 2010
Published: May 10, 2010

Citation
Erica E. Jung, Aram J. Chung, and David Erickson, "Analysis of liquid-to-solid coupling and other performance parameters for microfluidically reconfigurable photonic systems," Opt. Express 18, 10973-10984 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-10973


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  3. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007). [CrossRef] [PubMed]
  4. X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009). [CrossRef] [PubMed]
  5. X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008). [CrossRef] [PubMed]
  6. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010). [CrossRef]
  7. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  8. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004). [CrossRef] [PubMed]
  9. Z. Y. Li, Z. Y. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006). [CrossRef] [PubMed]
  10. X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008). [CrossRef]
  11. J. M. Lim, S. H. Kim, J. H. Choi, and S. M. Yang, “Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources,” Lab Chip 8(9), 1580–1585 (2008). [CrossRef] [PubMed]
  12. M. Rosenauer and M. J. Vellekoop, “A versatile liquid-core/liquid-twin-cladding waveguide micro flow cell fabricated by rapid prototyping,” Appl. Phys. Lett. 95(16), 163702–163705 (2009). [CrossRef]
  13. H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008). [CrossRef]
  14. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]
  15. A. J. Chung, E. Jung, and D. Erickson, “A new form of reconfigurable material using optofludic waveguides”, in Proceedings of Micro- Total Analysis System, (Jeju, Korea, 2009), pp. 198–200.
  16. D. Lide, ed., Handbook of Chemistry of Physics, 79th ed. (CRC Press, 1999).
  17. D. Marcuse, “TE modes of graded-index slab waveguides,” IEEE J. Quantum Electron. 9(10), 1000–1006 (1973). [CrossRef]
  18. C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, INC., 1995).
  19. S. Kawakami, M. Miyagi, and S. Nishida, “Bending losses of dielectric slab optical waveguide with double or multiple claddings: theory,” Appl. Opt. 14(11), 2588–2597 (1975). [CrossRef] [PubMed]
  20. K. Thyagarajan, M. R. Shenoy, and A. K. Ghatak, “Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach,” Opt. Lett. 12(4), 296–298 (1987). [CrossRef] [PubMed]
  21. C. H. Tsai, C. H. Tai, L. M. Fu, and F. B. Wu, “Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems,” J. Micromech. Microeng. 15(2), 377–385 (2005). [CrossRef]
  22. A. W. Snyder, and J. D. Love, Optical waveguide Theory (Chapman and Hall, 1983).
  23. K. S. Chiang and S. Y. Cheng, “Technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides,” Opt. Eng. 47(3), 034601–034604 (2008). [CrossRef]
  24. B. Wang, J. H. Jiang, and G. P. Nordin, “Compact slanted grating couplers,” Opt. Express 12(15), 3313–3326 (2004). [CrossRef] [PubMed]
  25. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited