OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 10985–10994

Cavity-enhanced generation of 6 W cw second-harmonic power at 532 nm in periodically-poled MgO:LiTaO3

Iolanda Ricciardi, Maurizio De Rosa, Alessandra Rocco, Pietro Ferraro, and Paolo De Natale  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 10985-10994 (2010)
http://dx.doi.org/10.1364/OE.18.010985


View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on efficient cw high-power second harmonic generation in a periodically poled LiTaO3 crystal placed in a resonant enhancement cavity. We tested three configurations, differing in the coupling mirror reflectivity, and a maximum conversion efficiency of about 76%, corresponding to 6.1 W of green light with 8.0 W of fundamental power, was achieved. This is, to the best of our knowledge, the highest cw power ever reported using a periodically-poled crystal in an external cavity. We observed photo-thermal effect induced by photon absorption at the mirrors and in the crystal, which however does not affect stable operation of the cavity. A further effect arises for two out of the three configurations, at higher values of the input power, which degrades the performance of the locked cavity. We suggest this effect is due to the onset of competing nonlinearities in the same crystal.

© 2010 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 18, 2010
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 15, 2010
Published: May 11, 2010

Citation
Iolanda Ricciardi, Maurizio De Rosa, Alessandra Rocco, Pietro Ferraro, and Paolo De Natale, "Cavity-enhanced generation of 6 W cw second-harmonic power at 532 nm in periodically-poled MgO:LiTaO3," Opt. Express 18, 10985-10994 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-10985


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. S. Hum and M. M. Fejer, "Quasi-phasematching," C. R. Physique 8, 180-198 (2007). [CrossRef]
  2. G. D. Miller, R. G. Batchko,W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997). [CrossRef]
  3. S. V. Tovstonog, S. Kurimura, and K. Kitamurai, "High power continuous-wave green light generation by quasi phase matching in Mg stoichiometric lithium tantalate, " Appl. Phys. Lett. 90, 051115 (2007). [CrossRef]
  4. G. K. Samanta, S. Chaitanya Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, "High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4," Opt. Lett. 33, 2955-2957 (2008). [CrossRef] [PubMed]
  5. S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, "Room-temperature stable generation of 19 Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal," J. Lightwave Technol. 26, 3866-3871 (2008). [CrossRef]
  6. G. K. Samanta, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, "Stable, 9.6W, continuous-wave, single-frequency, fiber-based green source at 532 nm," Opt. Lett. 34, 1561-1563 (2009). [CrossRef] [PubMed]
  7. S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, "High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT," Opt. Express 17, 13711-13726 (2009). [CrossRef] [PubMed]
  8. G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Ligth Beams," J. Appl. Phys. 39, 3597-3639 (1968). [CrossRef]
  9. F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, "Frequency-doubling of a CWfiber laser using PPKTP, PPMgSLT, and PPMgLN," Opt. Express 15, 12882 (2007). [CrossRef] [PubMed]
  10. Y. Kitaoka, K. Mizuuchi, K. Yamamoto, M. Kato, and T. Sasaki, "Intracavity second-harmonic generation with a periodically domain-inverted LiTaO3 device" Opt. Lett. 21, 1972-1974 (1996). [CrossRef] [PubMed]
  11. K.S. Abedin, T. Tsuritani, M. Sato, and H. Ito, "Integrated intracavity quasi-phase-matched second harmonic generation based on periodically poled Nd:LiTaO3," Appl. Phys. Lett. 70, 10-12 (1997). [CrossRef]
  12. Q1. R. Sarrouf, T. Badr, and J. J. Zondy, "Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3 m Nd : YLiF4 lasers," J. Opt. A 10, 104011 (2008).
  13. A. Ashkin, G. Boyd, and J. Dziedzic, "Resonant optical second harmonic generation and mixing, IEEE J. Quantum Electr. 6, 109-124 (1966). [CrossRef]
  14. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913-919 (1988). [CrossRef]
  15. I. Juwiler and A. Arie, "Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity," Appl. Opt. 42, 7163-7169 (2003). [CrossRef]
  16. F. Torabi-Goudarzi and E. Riis, "Efficient cw high-power frequency doubling in periodically poled KTP," Opt. Commun. 227, 389-403 (2003). [CrossRef]
  17. R. Le Targat, J.-J. Zondy, and P. Lemonde "75%-Efficiency blue generation from an intracavity PPKTP frequency doubler," Opt. Commun. 247, 471-481 (2005). [CrossRef]
  18. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, "High-efficiency blue-light generation with a ring cavity with periodically poled KTP," J. Opt. Soc. Am. B 24, 576-580 (2007). [CrossRef]
  19. P. Herskind, J. Lindballe, C. Clausen, J. L. Sørensen, and M. Drewsen, "Second-harmonic generation of light at 544 and 272 nm from an ytterbium-doped distributed-feedback fiber laser," Opt. Lett. 32, 268-270 (2007). [CrossRef] [PubMed]
  20. J. H. Lundeman, O. B. Jensen, P. E. Andersen, S. Andersson- Engels, B. Sumpf, G. Erbert, and P. M. Petersen, "High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser," Opt. Express 16, 2486-2493 (2008). [CrossRef] [PubMed]
  21. Y.-H. Cha, K.-H Ko, G. Lim, J.-M. Han, H.-M. Park, T.-S. Kim, and D.-Y. Jeong, "External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser," Opt. Express 16, 4866-4871 (2008). [CrossRef] [PubMed]
  22. T. S¨udmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, "Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier," Opt. Express 16, 1546-1551 (2008). [CrossRef] [PubMed]
  23. Y. Feng, L. R. Taylor, and D. Bonaccini Calia, "25WRaman-fiber-amplifier-based 589 nm laser for a large guide star," Opt. Express 16, 19021-19026 (2009). [CrossRef]
  24. J. P. Anderegg, T. A. Chernysheva, D. F. Elkins, C. L. Simmons, R. C. Bishop, C. L. Pedersen, M. L. Murphy, and F. L. Williams, "RGB laser generation from fiber MOPAs coupled to external enhancement cavities," SPIE Photonics West, San Francisco 2010, paper 7578-15 (2010).
  25. A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, "UV and visible absorption in LiTaO3," Proc. SPIE 3610, 44-51 (1999). [CrossRef]
  26. D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007). [CrossRef]
  27. H. Ishizuki and T. Taira, "Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device," Opt. Express 16, 16963 (2008). [CrossRef] [PubMed]
  28. I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009). [PubMed]
  29. T. W. H¨ansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Opt. Commun. 35, 441-445 (1980). [CrossRef]
  30. M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996) [CrossRef]
  31. K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, andM.S. Feld, "Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level," Opt. Lett. 22, 1433-1435 (1997). [CrossRef]
  32. J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005). [CrossRef] [PubMed]
  33. M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, "Thermoelastic effects at low temperature and quantum limits in displacements measurements," Phys. Rev. D 63, 082003 (2001). [CrossRef]
  34. M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, "Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors," Phys. Rev. Lett. 89, 237402 (2002). [CrossRef] [PubMed]
  35. A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997). [CrossRef]
  36. A. G. White, "Classical and quantum dynamics of optical frequency conversion," PhD Thesis, Australian National University (1997); http://photonics.anu.edu.au/qoptics/theses.htmlSee also references therein.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited