OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 10995–11007

Hybrid gap modes induced by fiber taper waveguides: Application in spectroscopy of single solid-state emitters deposited on thin films

Marcelo Davanço and Kartik Srinivasan  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 10995-11007 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show, via simulations, that an optical fiber taper waveguide can be an efficient tool for photoluminescence and resonant, extinction spectroscopy of single emitters, such as molecules or colloidal quantum dots, deposited on the surface of a thin dielectric membrane. Placed over a high refractive index membrane, a tapered fiber waveguide induces the formation of hybrid mode waves, akin to dielectric slotted waveguide modes, that provide strong field confinement in the low index gap region. The availability of such gap-confined waves yields potentially high spontaneous emission enhancement factors (≈ 20), fluorescence collection efficiencies (≈ 23 %), and transmission extinction (≈ 20 %) levels. A factor of two improvement in fluorescence and extinction levels is predicted if the membrane is instead replaced with a suspended channel waveguide. Two configurations, for operation in the visible (≈ 600 nm) and near-infrared (≈ 1300 nm) spectral ranges are evaluated, presenting similar performances.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Devices

Original Manuscript: February 19, 2010
Revised Manuscript: May 4, 2010
Manuscript Accepted: May 5, 2010
Published: May 11, 2010

Marcelo Davanco and Kartik Srinivasan, "Hybrid gap modes induced by fiber taper waveguides: Application in spectroscopy of single solid-state emitters deposited on thin films," Opt. Express 18, 10995-11007 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  2. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009). [CrossRef] [PubMed]
  3. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with silicon-organic hybrid slot waveguides," Nat. Photon. 3, 216-219 (2009). [CrossRef]
  4. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, "Broadband enhancement of light emission insilicon slot waveguides," Opt. Express 17, 7479-7490 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-9-7479 [CrossRef] [PubMed]
  5. W. Moerner, "Examining nanoenvironments in solids on the scale of a single, isolated inpurity molecule," Science 265, 46-53 (1994). [CrossRef] [PubMed]
  6. W. E. Moerner, "Single-photon sources based on single molecules in solids," N. J. Phys. 6, 88 (2004). [CrossRef]
  7. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Gotzinger, and V. Sandoghdar, "A singlemolecule optical transistor," Nature 460, 76-80 (2009). [CrossRef] [PubMed]
  8. K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091102 (2007). [CrossRef]
  9. M. Davanc¸o and K. Srinivasan, "Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides," Opt. Express 17, 10542-10563 (2009). [CrossRef] [PubMed]
  10. M. Davanc¸o and K. Srinivasan, "Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole," Opt. Lett. 34, 2542-2544 (2009), http://ol.osa.org/abstract.cfm?URI=ol-34-16-2542 [CrossRef] [PubMed]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, NY, 1983).
  12. I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, "Strong Extinction of a Laser Beam by a Single Molecule," Phys. Rev. Lett. 98, 033601 (2007). [CrossRef] [PubMed]
  13. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, "Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites," Adv. Mater. 12, 1102-1105 (2000). [CrossRef]
  14. R. D. Schaller, M. A. Petruska, and V. Klimov, "Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals," J. Phys. Chem. B 107, 13765-13768 (2003). [CrossRef]
  15. A. Zumbusch, L. Fleury, R. Brown, J. Bernard, and M. Orrit, "Probing individual two-level systems in a polymer by correlation of single molecule fluorescence," Phys. Rev. Lett. 70, 3584-3587 (1993). [CrossRef] [PubMed]
  16. M. Orrit and J. Bernard, "Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal," Phys. Rev. Lett. 65, 2716-2719 (1990). [CrossRef] [PubMed]
  17. G. S. Harms, T. Irngartinger, D. Reiss, A. Renn, and U. P. Wild, "Fluorescence lifetimes of terrylene in solid matrices," Chem. Phys. Lett. 313, 533-538 (1999). [CrossRef]
  18. T. Bottger, C. W. Thiel, Y. Sun, and R. L. Cone, "Optical decoherence and spectral diffusion at 1.5 μ in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration," Phys. Rev. B: Condens. Matter Mater. Phys. 73, 075101 (2006). [CrossRef]
  19. W.-P. Huang, "Coupled-mode theory for optical waveguides: and overview," J. Opt. Soc. Am. A 11, 963-983 (1994). [CrossRef]
  20. Following Ref. [19], the fiber mode fraction, Eq. (2), would be given by the expression fm = _ f |m__m| f _ (_ f | f __m|m_)-1, where _ f |m_ =∬ ∫ (ef ×h*m +hf×e* mm_ · ˆzdS/4. Considering no reflections at the interface between the isolated fiber and the contact region, (i.e., the field just after the interface is identical to the incident, foward propagating, field), Eq. (2) gives the same result.
  21. S. J. van Enk, "Atoms, dipole waves, and strongly focused light beams," Phys. Rev. A 69, 043813 (2004). [CrossRef]
  22. F. Wise, "Lead salt quantum dots: The limit of strong quantum confinement," Acc. Chem. Res. 33, 773-780 (2000). [CrossRef] [PubMed]
  23. R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004). [CrossRef]
  24. V. S. C. M. Rao and S. Hughes, "Single quantum-dot Purcell factor and beta factor in a photonic crystal waveguide," Phys. Rev. B 75, 205437 (2007). [CrossRef]
  25. Q4. G. Lecamp, P. Lalanne, and J. P. Hugonin, "Very Large Spontaneous-Emission beta Factors in Photonic-Crystal Waveguides," Phys. Rev. Lett. 99 (2007). [CrossRef] [PubMed]
  26. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, "Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence," Nat. Phys. 4, 60-66 (2008). [CrossRef]
  27. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, "Spectroscopy of 1.55 m PbS Quantum Dots on Si Photonic Crystal Cavities with a Fiber Taper Waveguide," arXiv:0912.1365v1 (2009).
  28. M.W. McCutcheon and M. Loncar, "Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19136-19145 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-23-19136 [CrossRef]
  29. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited