OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11033–11045

Pump scheme for gain-flattened Raman fiber amplifiers using improved particle swarm optimization and modified shooting algorithm

Hai-ming Jiang, Kang Xie, and Ya-fei Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11033-11045 (2010)
http://dx.doi.org/10.1364/OE.18.011033


View Full Text Article

Enhanced HTML    Acrobat PDF (1836 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An effective pump scheme for the design of broadband and flat gain spectrum Raman fiber amplifiers is proposed. This novel approach uses a new shooting algorithm based on a modified Newton-Raphson method and a contraction factor to solve the two point boundary problems of Raman coupled equations more stably and efficiently. In combination with an improved particle swarm optimization method, which improves the efficiency and convergence rate by introducing a new parameter called velocity acceptability probability, this scheme optimizes the wavelengths and power levels for the pumps quickly and accurately. Several broadband Raman fiber amplifiers in C + L band with optimized pump parameters are designed. An amplifier of 4 pumps is designed to deliver an average on-off gain of 13.3 dB for a bandwidth of 80 nm, with about ± 0.5 dB in band maximum gain ripples.

© 2010 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2330) Fiber optics and optical communications : Fiber optics communications
(290.5910) Scattering : Scattering, stimulated Raman
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 18, 2010
Revised Manuscript: April 25, 2010
Manuscript Accepted: April 26, 2010
Published: May 11, 2010

Citation
Hai-ming Jiang, Kang Xie, and Ya-fei Wang, "Pump scheme for gain-flattened Raman fiber amplifiers using improved particle swarm optimization and modified shooting algorithm," Opt. Express 18, 11033-11045 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11033


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Puc, D. I. Chang, G. Grosso, J. Ellison, R. Oberland, S. Burtsev, P. A. Perrier, W. Pelouch, and S. Webb, “L-band unrepeatered WDM experiment over 451 km using all-Raman amplification and ROPA,” In Proc. LEOS, 2008, pp. 485–486.
  2. K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240-km CWDM Transmission Using Cascaded SOA Raman Hybrid Amplifiers With 70-nm Bandwidth,” IEEE Photon. Technol. Lett. 18(2), 328–330 (2006). [CrossRef]
  3. J. Bromage, “Raman Amplification for Fiber Communications Systems,” J. Lightwave Technol. 22(1), 79–93 (2004). [CrossRef]
  4. V. E. Perlin and H. G. Winful, “On distributed Raman amplification for ultrabroad-band long-haul WDM systems,” J. Lightwave Technol. 20(3), 409–416 (2002). [CrossRef]
  5. M. Giltrelli and M. Santagiustina, “Semianalytical approach to the gain ripple minimization in multiple pump fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 16(11), 2454–2456 (2004). [CrossRef]
  6. Y. Emori, K. Tanaka, and S. Namiki, “100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 35(16), 1355–1356 (1999). [CrossRef]
  7. M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001). [CrossRef]
  8. M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001). [CrossRef]
  9. H. Jiang, K. Xie, and Y. Wang, “Photonic crystal fiber for use in fiber Raman amplifiers,” Electron. Lett. 44(13), 796–798 (2008). [CrossRef]
  10. H. M. Jiang, K. Xie, and Y. F. Wang, “Novel asymmetrical twin-core photonic crystal fiber for gain-flattened Raman amplifier,” Sci. China, Ser. E: Technol. Sci. 52(8), 2412–2417 (2009). [CrossRef]
  11. H. M. Jiang, K. Xie, and Y. F. Wang, “C band single pump photonic crystal fiber Raman amplifier,” Chin. Sci. Bull. 55(6), 555–559 (2010). [CrossRef]
  12. B. Neto, A. L. Teixeira, N. Wada, and P. S. André, “Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers,” Opt. Express 15(26), 17520–17528 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17520 . [CrossRef] [PubMed]
  13. X. Liu and B. Lee, “Optimal design of fiber Raman amplifier based on hybrid genetic algorithm,” IEEE Photon. Technol. Lett. 16(2), 428–430 (2004). [CrossRef]
  14. S. Cui, J. Liu, and X. Ma, “A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier,” IEEE Photon. Technol. Lett. 16(11), 2451–2453 (2004). [CrossRef]
  15. V. E. Perlin and H. G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers,” J. Lightwave Technol. 20(2), 250–254 (2002). [CrossRef]
  16. J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, and W. Jiang, “Robust, compact, and flexible neural model for a fiber Raman amplifier,” J. Lightwave Technol. 24(6), 2362–2367 (2006). [CrossRef]
  17. P. Xiao, Q. Zeng, J. Huang, and J. Liu, “Pump optimal configuration algorithm for multi-pumped sources of distributed Raman fiber amplifiers,” Proc. SPIE 4906, 433–441 (2002). [CrossRef]
  18. Z. Lalidastjerdi, F. Kroushavi, and M. Rahmani, “An efficient shooting method for fiber amplifiers and lasers,” Opt. Laser Technol. 40(8), 1041–1046 (2008). [CrossRef]
  19. X. Liu and B. Lee, “Effective shooting algorithm and its application to fiber amplifiers,” Opt. Express 11(12), 1452–1461 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1452 . [CrossRef] [PubMed]
  20. J. Hu, B. S. Marks, Q. Zhang, and C. R. Menyuk, “A shooting algorithm to model backward-pumped Raman amplifiers,” In Proc. LEOS, 1, 246–247 (2003).
  21. J. Ning, Q. Han, Z. Chen, J. Li, and X. Li, “A powerful simple shooting method for designing multi-pumped fibre Raman amplifiers,” Chin. Phys. Lett. 21(11), 2184–2187 (2004). [CrossRef]
  22. Q. Han, J. Ning, H. Zhang, and Z. Chen, “Novel shooting algorithm for highly efficient analysis of fiber Raman amplifiers,” J. Lightwave Technol. 24(4), 1946–1952 (2006). [CrossRef]
  23. X. Liu and M. Zhang, “An effective method for two-point boundary value problems in Raman amplifier propagation equations,” Opt. Commun. 235(1-3), 75–82 (2004). [CrossRef]
  24. S. M. Roberts, and J. S. Shipman, Two-point boundary value problems: shooting methods, (New York: American Elsevier, 1972), Chap. 6 pp. 111–114.
  25. R. Eberhart, and J. Kennedy, “A new optimizer using particle swarm theory,” In Proc. Int. Symp. Micromechatronics. Hum. Sci., 1995, pp. 39–43.
  26. J. Kennedy, and R. Eberhart, “Particle swarm optimization,” In Proc. IEEE Int. Conf. Neural Networks, 1995, pp. 1942–1948.
  27. E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis, “Particle swarm optimization for minimax problems,” In: Proc. IEEE Conf. Evol. Comput., 2002, pp. 1576–1581.
  28. R. Mendes, P. Cortez, M. Rocha, and J. Neves, “Particle swarms for feed forward neural network training,” In Proc. Int. Jt. Conf. Neural Networks, 2002, pp. 1895–1899.
  29. H. M. Jiang, K. Xie, and Y. F. Wang, “Design of multi-pumped Raman fiber amplifier by particle swarm optimization,” J. Optoelectron., Laser 15, 1190–1193 (2004) (in Chinese).
  30. H. M. Jiang, K. Xie, and Y. F. Wang, “Novel design method for a multi-wavelength backward-pumped fiber raman amplifier to achieve a flat gain spectrum,” In Proc. Int. Conf. Opt. Commun. Networks, 2005, pp. 30–32.
  31. A. Mowla and N. Granpayeh, “Design of a flat-gain multipumped distributed fiber Raman amplifier by particle swarm optimization,” J. Opt. Soc. Am. A 25(12), 3059–3066 (2008). [CrossRef]
  32. A. Mowla and N. Granpayeh, “Optimum design of a hybrid erbium-doped fiber amplifier/fiber Raman amplifier using particle swarm optimization,” Appl. Opt. 48(5), 979–984 (2009). [CrossRef] [PubMed]
  33. H. M. Jiang, K. Xie, and Y. F. Wang, “Shooting algorithm and particle swarm optimization based raman fiber amplifiers gain spectra design,” Opt. Commun. (to be published), doi:. [PubMed]
  34. Y. Shi, and R. Eberhart, “A modified particle swarm optimizer,” In Proc. IEEE Conf. Evol. Comput., 1998, pp. 69–73.
  35. X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Trans. Evol. Comput. 3(2), 82–102 (1999). [CrossRef]
  36. X. Liu and Y. Li, “Efficient algorithm and optimization for broadband Raman amplifiers,” Opt. Express 12(4), 564–573 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-564 . [CrossRef] [PubMed]
  37. X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230(4-6), 425–431 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited