OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11089–11096

Low-loss surface-plasmonic nanobeam cavities

Myung-Ki Kim, Seung Hoon Lee, Muhan Choi, Byeong-Hyeon Ahn, Namkyoo Park, Yong-Hee Lee, and Bumki Min  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11089-11096 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1881 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One-dimensional surface-plasmonic nanobeam cavities are proposed as a means to confine surface plasmons to a subwavelength-scale mode volume, while maintaining a relatively high Q-factor. By bonding one-dimensional photonic-crystal nanobeam structures to a low-loss metallic substrate, a clear plasmonic TM bandgap can be formed. The introduction of a single-cell defect alongside the engineering of side-air-hole shifts to this plasmonic-crystal nanobeam provides subwavelength-scale plasmonic mode localization within the plasmonic TM bandgap. This suppresses radiation and scattering loss to render a maximum Q-factor of 413 and a modal volume of 3.67 × 10−3 μm3 at room temperature. The possibility of further reduction in the intrinsic loss of the cavity is investigated by lowering the operating temperature and the Q-factor of 1.34 × 104 is predicted at a temperature of 20K for the optimistic case.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(140.3945) Lasers and laser optics : Microcavities
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: April 2, 2010
Revised Manuscript: May 5, 2010
Manuscript Accepted: May 5, 2010
Published: May 11, 2010

Myung-Ki Kim, Seung Hoon Lee, Muhan Choi, Byeong-Hyeon Ahn, Namkyoo Park, Yong-Hee Lee, and Bumki Min, "Low-loss surface-plasmonic nanobeam cavities," Opt. Express 18, 11089-11096 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, New York, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  4. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  5. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef]
  6. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  7. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]
  8. R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  9. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244(1-6), 455–459 (2005). [CrossRef]
  10. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  11. S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006). [CrossRef]
  12. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007). [CrossRef]
  13. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  14. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]
  15. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  16. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007). [CrossRef] [PubMed]
  17. Y. Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007). [CrossRef]
  18. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009). [CrossRef] [PubMed]
  19. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  20. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009). [CrossRef] [PubMed]
  21. E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface--plasmon whispering gallery resonators,” Nano Lett. 9(9), 3147–3150 (2009). [CrossRef] [PubMed]
  22. M. K. Seo, S.-H. Kwon, H.-S. Eo, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. Article ASAP (2009).
  23. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  24. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  26. When the field penetrated into the silver substrate is considered in the calculation, the vertical modal length is estimated to be 38 nm.
  27. For the intrinsic Q-factor estimations, the Harminv is used to extract the decay constant of the cavity field amplitude. http://ab-initio.mit.edu/wiki/index.php/Harminv
  28. M. Mayy, G. Zhu, E. Mayy, A. Yakim, A. Webb, J. Livenere, H. Li, D. Bobb, and M. A. Noginov, “Effect of low temperature on surface plasmon polaritons in silver films,” in Conference on Lasers and Electro-Optics/ International Quantum Electronics Conference, Technical Digest (CD) (Optical Society of America, 2009), paper JTuD119.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited