OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11105–11110

Traveling-wave Uni-Traveling Carrier Photodiodes for continuous wave THz generation

Efthymios Rouvalis, Cyril C. Renaud, David G. Moodie, Michael J. Robertson, and Alwyn J. Seeds  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11105-11110 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The design, experimental evaluation and performance of a Traveling-Wave Uni-Traveling Carrier photodiode for Terahertz generation are described and its advantages in terms of frequency response are demonstrated. The device delivered 148 μW at 457 GHz, 24 μW at 914 GHz when integrated with resonant antennas and 105 μW at 255 GHz, 30 μW at 408 GHz, 16 μW at 510 GHz and 10 μW at 612 GHz. Record levels of Terahertz figure of merit (PTHz/Popt2 in W−1) were achieved ranging from 1 W−1 at 110 GHz to 0.0024 W−1 at 914 GHz.

© 2010 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(230.7020) Optical devices : Traveling-wave devices
(250.0250) Optoelectronics : Optoelectronics

ToC Category:

Original Manuscript: April 7, 2010
Revised Manuscript: April 29, 2010
Manuscript Accepted: April 29, 2010
Published: May 11, 2010

Efthymios Rouvalis, Cyril C. Renaud, David G. Moodie, Michael J. Robertson, and Alwyn J. Seeds, "Traveling-wave Uni-Traveling Carrier Photodiodes for continuous wave THz generation," Opt. Express 18, 11105-11110 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). [CrossRef]
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef]
  3. H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000). [CrossRef]
  4. H. Eisele, “Third-Harmonic Power Extraction from InP Gunn Devices up to 455 GHz,” IEEE Microw. Wirel. Compon. Lett. 19(6), 416–418 (2009). [CrossRef]
  5. H. Eisele, “355 GHz oscillator with GaAs TUNNETT diode,” Electron. Lett. 41(6), 329 (2005). [CrossRef]
  6. M. Ino, T. Ishibashi, and M. Ohmori, “CW oscillation with p+-p-n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands,” Electron. Lett. 12(6), 148–149 (1976). [CrossRef]
  7. G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002). [CrossRef]
  8. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285 (1995). [CrossRef]
  9. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009). [CrossRef]
  10. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008). [CrossRef]
  11. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-traveling carrier photodiode,” Proc. SPIE 6194, 61940C–61940C–8 (2006).
  12. K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997). [CrossRef]
  13. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004). [CrossRef]
  14. J. Campbell, S. Demiguel, and N. Li, “High-speed photodetectors,” 31st European Conference on Optical Communication (Glasgow, Scotland, 2005), pp. 493–496 vol.3.
  15. F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001). [CrossRef]
  16. A. J. Seeds, F. Pozzi, C. C. Renaud, M. J. Fice, L. Ponnampalam, D. C. Rogers, I. F. Lealman, and R. Gwilliam, “Microwave Photonics: Opportunities for Photonic Integration”, 14th European Conference on Integrated Optics (Eindhoven, The Netherlands, 2008), Th1, pp. 123–132.
  17. C. C. Renaud, D. Moodie, M. Robertson, and A. J. Seeds, “High Output Power at 110 GHz with a Waveguide Uni-Travelling Carrier photodiode,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Lake Buena Vista, Florida, USA, 2007), pp. 782–783.
  18. E. A. Michael, “Travelling-wave photonic mixers for increased continuous-wave power beyond 1 THz,” Semicond. Sci. Technol. 20(7), S164–S177 (2005). [CrossRef]
  19. D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited