OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11132–11137

Slow light in the GaAs-rod-loaded metallic waveguide for terahertz wave

Wei Wang, Jinlong He, Xiangjun Li, and Zhi Hong  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11132-11137 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1093 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The modes in a circular metallic waveguide loaded with a high permittivity dielectric rod may possess similar dispersion relations to the modes in the left-handed metamaterial (LHM) waveguide. Therefore such dielectric-loaded metallic waveguide may also support slow light with parameters properly selected. The slow light in the GaAs-rod-loaded metallic waveguide is numerically studied. The results show that the wavelength of slow light varies with the parameters of the waveguide. A linearly tapered waveguide and other realizable simple structures are proposed accordingly to realize the “trapped rainbow” phenomena. Moreover, the practical lossy tapered waveguide is also investigated in the terahertz region. It is shown that the slow light with low loss can be achieved in a realistic GaAs-loaded metallic waveguide.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials

ToC Category:
Slow and Fast Light

Original Manuscript: April 16, 2010
Revised Manuscript: May 6, 2010
Manuscript Accepted: May 7, 2010
Published: May 11, 2010

Wei Wang, Jinlong He, Xiangjun Li, and Zhi Hong, "Slow light in the GaAs-rod-loaded metallic waveguide for terahertz wave," Opt. Express 18, 11132-11137 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Tsakmakidis, A. D. Boardman, O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007). [CrossRef] [PubMed]
  2. M. D. Lukin, A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001). [CrossRef] [PubMed]
  3. A. Melloni, F. Morichetti, M. Martinelli, “Optical slow wave structures,” Opt. Photon. News 14(11), 44–48 (2003). [CrossRef]
  4. K. Lee, N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett. 78(6), 703–705 (2001). [CrossRef]
  5. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005). [CrossRef] [PubMed]
  6. Q. Gan, Z. Fu, Y. J. Ding, F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008). [CrossRef] [PubMed]
  7. J. He, S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006). [CrossRef]
  8. K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures,” Appl. Phys. Lett. 89(20), 201103 (2006). [CrossRef]
  9. Y. J. Huang, W. T. Lu, S. Sridhar, “Nanowire waveguide made from extremely anisotropic metamaterials,” Phys. Rev. A 77(6), 063836 (2008). [CrossRef]
  10. A. Reza, M. M. Dignam, S. Hughes, “Can light be stopped in realistic metamaterials?” Nature 455(7216), E10–E11 (2008). [CrossRef]
  11. T. Jiang, J. Zhao, Y. Feng, “Stopping light by an air waveguide with anisotropic metamaterial cladding,” Opt. Express 17(1), 170–177 (2009). [CrossRef] [PubMed]
  12. J. He, Y. Jin, Z. Hong, S. He, “Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding,” Opt. Express 16(15), 11077–11082 (2008). [CrossRef] [PubMed]
  13. T. Jiang, Q. Zhang, Y. Feng, “Compensating loss with gain in slow-light propagation along slab waveguide with anisotropic metamaterial cladding,” Opt. Lett. 34(24), 3869–3871 (2009). [CrossRef] [PubMed]
  14. P. J. B. Clarricoats, A. B. Birtles, “Circular Waveguide Backward-wave Experiments,” J. Electron Control 15, 325–330 (1963). [CrossRef]
  15. G. N. Tsandoulas, “Propagation in Dielectric-Lined Square Waveguides,” IEEE Trans. Microw. Theory Tech. 23(5), 406–410 (1975). [CrossRef]
  16. M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92(6), 063903 (2004). [CrossRef] [PubMed]
  17. A. Salandrino, D. N. Christodoulides, “Negative index Clarricoats-Waldron waveguides for terahertz and far infrared applications,” Opt. Express 18(4), 3626–3631 (2010). [CrossRef] [PubMed]
  18. G. Grüner, Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer, Berlin, 1998), Chap. 3.
  19. I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5 Pt 2), 057602 (2003). [CrossRef] [PubMed]
  20. K. L. Tsakmakidis, A. D. Boardman, O. Hess, “Can light be stopped in realistic metamaterials? Reply,” Nature 455, E11–E12 (2008). [CrossRef]
  21. J. He, Centre for THz Research, China Jiliang University, Hangzhou 310018, China, and Z. Hong et al. are preparing a manuscript to be called “Backward coupling of modes in a left-handed metamaterial tapered waveguide.”
  22. Q. Gan, Y. J. Ding, F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009). [CrossRef] [PubMed]
  23. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009). [CrossRef]
  24. J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, R. R. Rice, “Binary III-V semiconductor core optical fiber,” Opt. Express 18(5), 4972–4979 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited