OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11159–11172

Tuning spectral properties of ultrafast laser ablation plasmas from brass using adaptive temporal pulse shaping

M. Guillermin, A. Klini, J. P. Colombier, F. Garrelie, D. Gray, C. Liebig, E. Audouard, C. Fotakis, and R. Stoian  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11159-11172 (2010)
http://dx.doi.org/10.1364/OE.18.011159


View Full Text Article

Enhanced HTML    Acrobat PDF (3371 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using automated laser pulse temporal shaping we report on enhancing spectral emission characteristics of ablation plasmas produced by laser irradiation of brass on ultrafast time scales. For different input irradiance levels, control of both atomic and ionic species becomes possible concerning the yield and the excitation state. The improved energy coupling determined by tailored pulses induces material ejection with lower mechanical load that translates into hot gas-phase regions with higher excitation degrees and reduced particulates.

© 2010 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(310.1860) Thin films : Deposition and fabrication
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Ultrafast Optics

History
Original Manuscript: February 12, 2010
Revised Manuscript: March 19, 2010
Manuscript Accepted: March 22, 2010
Published: May 12, 2010

Citation
M. Guillermin, A. Klini, J. P. Colombier, F. Garrelie, D. Gray, C. Liebig, E. Audouard, C. Fotakis, and R. Stoian, "Tuning spectral properties of ultrafast laser ablation plasmas from brass using adaptive temporal pulse shaping," Opt. Express 18, 11159-11172 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy (LIBS) in archaeological science--applications and prospects,” Anal. Bioanal. Chem. 387(3), 749–760 (2007). [CrossRef]
  2. A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77(4), 391–397 (2003). [CrossRef]
  3. E. L. Gurevich, and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives,” Appl. Spectrosc. 61(10), 233–242 (2007). [CrossRef]
  4. F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87(6), 063901 (2005). [CrossRef]
  5. H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007). [CrossRef]
  6. J. Perrière, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91(2), 690–696 (2002). [CrossRef]
  7. C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252(13), 4857–4862 (2006). [CrossRef]
  8. F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 90(2), 211–217 (2007).
  9. R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, “Chromium carbide thin films deposited by ultra-short pulse laser deposition,” Appl. Surf. Sci. 255(17), 7729–7733 (2009). [CrossRef]
  10. D. von der Linde, and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155(1-4), 1–10 (2000). [CrossRef]
  11. N. M. Bulgakova, I. M. Bourakov, and N. A. Bulgakova, “Rarefaction shock wave: formation under short pulse laser ablation of solids,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046311 (2001). [CrossRef]
  12. J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006). [CrossRef]
  13. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006). [CrossRef]
  14. A. Semerok, and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004). [CrossRef]
  15. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423(1-3), 197–201 (2006). [CrossRef]
  16. S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104(11), 113520 (2008). [CrossRef]
  17. T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106(1), 013304 (2009). [CrossRef]
  18. A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16(15), 11300–11309 (2008). [CrossRef] [PubMed]
  19. A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254(4), 863–867 (2007). [CrossRef]
  20. M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83(7), 1474–1476 (2003). [CrossRef]
  21. R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87(12), 124105 (2005). [CrossRef]
  22. M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255(10), 5163–5166 (2009). [CrossRef]
  23. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. SeyfriedV, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998). [CrossRef] [PubMed]
  24. A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253(19), 7677–7681 (2007). [CrossRef]
  25. O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, and R. E. Russo, “Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu-Zn Alloys,” Spectrochim. Acta, B At. Spectrosc. 54(9), 1351–1365 (1999). [CrossRef]
  26. R. Hergenröder, O. Samek, and V. Hommes, “Femtosecond laser ablation elemental mass spectrometry,” Mass Spectrom. Rev. 25(4), 551–572 (2006). [CrossRef] [PubMed]
  27. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, B At. Spectrosc. 55(11), 1771–1785 (2000). [CrossRef]
  28. M. Guillermin, “Study of the femtosecond laser ablation plume, control and optimization of processes,” PhD Thesis, Université Jean Monnet, Saint Etienne (2009) (http://tel.archives-ouvertes.fr/tel-00395196/en/).
  29. C. C. Garcia, H. Lindner, A. von Bohlen, C. Vadla, and K. Niemax, “Elemental fractionation and stoichiometric sampling in femtosecond laser ablation,” J. Anal. At. Spectrom. 23(4), 470–478 (2008). [CrossRef]
  30. D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, and J. Etchepare, “Interaction of a laser-produced plume with a second time delayed femtosecond pulse,” Appl. Phys. Lett. 86(7), 071502 (2005). [CrossRef]
  31. V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1006–1010 (2008). [CrossRef]
  32. S. Noël, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time delayed femtosecond laser pulses,” Appl. Surf. Sci. 255(24), 9738–9741 (2009). [CrossRef]
  33. X. Wang, S. Amoruso, and J. Xia, “Temporally and spectrally resolved analysis of a copper plasma plume produced by ultrafast laser ablation,” Appl. Surf. Sci. 255(10), 5211–5214 (2009). [CrossRef]
  34. P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimesPresented at the Second Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy, Hersonissos, Crete, Greece, September 30th?October 3rd, 2003,” J. Anal. At. Spectrom. 19(4), 437 (2004). [CrossRef]
  35. J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255(24), 9597–9600 (2009). [CrossRef]
  36. A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, “Models of wide-range equations of state for matter under conditions of high energy density,” Sov. Tech. Rev. B: Therm. Phys. Rev. 5, 1 (1993).
  37. R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165(1), 44–55 (2000). [CrossRef]
  38. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008). [CrossRef]
  39. B. Chimier, and V. T. Tikhonchuk, “Liquid-vapor phase transition and droplet formation by subpicosecond laser heating,” Phys. Rev. B 79(18), 184107 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited