OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11192–11201

Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition

Ryan M. Briggs, Imogen M. Pryce, and Harry A. Atwater  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11192-11201 (2010)
http://dx.doi.org/10.1364/OE.18.011192


View Full Text Article

Enhanced HTML    Acrobat PDF (809 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have integrated lithographically patterned VO2 thin films grown by pulsed laser deposition with silicon-on-insulator photonic waveguides to demonstrate a compact in-line absorption modulator for use in photonic circuits. Using single-mode waveguides at λ = 1550 nm, we show optical modulation of the guided transverse-electric mode of more than 6.5 dB with 2 dB insertion loss over a 2-µm active device length. Loss is determined for devices fabricated on waveguide ring resonators by measuring the resonator spectral response, and a sharp decrease in resonator quality factor is observed above 70 °C, consistent with switching of VO2 to its metallic phase. A computational study of device geometry is also presented, and we show that it is possible to more than double the modulation depth with modified device structures.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.6840) Materials : Thermo-optical materials
(230.5750) Optical devices : Resonators
(230.7380) Optical devices : Waveguides, channeled
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: March 23, 2010
Revised Manuscript: April 29, 2010
Manuscript Accepted: May 4, 2010
Published: May 12, 2010

Citation
Ryan M. Briggs, Imogen M. Pryce, and Harry A. Atwater, "Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition," Opt. Express 18, 11192-11201 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11192


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959). [CrossRef]
  2. J. B. Goodenough, “The two components of crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971). [CrossRef]
  3. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001). [CrossRef] [PubMed]
  4. H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO(2) as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett. 97(26), 266401 (2006). [CrossRef]
  5. B. G. Chae, H. T. Kim, D. H. Youn, and K. Y. Kang, “Abrupt metal–insulator transition observed in VO2 thin films induced by a switching voltage pulse,” Physica B 369(1-4), 76–80 (2005). [CrossRef]
  6. C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008). [CrossRef]
  7. S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003). [CrossRef]
  8. L. Jiang and W. N. Carr, “Design, fabrication and testing of a micromachined thermo-optical light modulator based on a vanadium dioxide array,” J. Micromech. Microeng. 14(7), 833–840 (2004). [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  11. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications system,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). [CrossRef]
  12. T. Ido, S. Tanaka, M. Suzuki, M. Koizumi, H. Sano, and H. Inoue, “Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides,” J. Lightwave Technol. 14(9), 2026–2034 (1996). [CrossRef]
  13. G. Gopalakrishnan, D. Ruzmetov, and S. Ramanathan, “On the triggering mechanism for the metal-insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009). [CrossRef]
  14. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000). [CrossRef]
  15. M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19(6), 429–431 (2007). [CrossRef]
  16. R. M. Briggs, M. Shearn, A. Scherer, and H. A. Atwater, “Wafer-bonded single-crystal silicon slot waveguides and ring resonators,” Appl. Phys. Lett. 94(2), 021106 (2009). [CrossRef]
  17. J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund., “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004). [CrossRef]
  18. L. J. van der Pauw, “A new method of measuring the resistivity and Hall coefficients on lamellae of arbitrary shape,” Philips Tech. Rev. 20, 220–224 (1958).
  19. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express 17(3), 1527–1534 (2009). [CrossRef] [PubMed]
  20. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  21. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1522 (2005). [CrossRef] [PubMed]
  22. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon gallium arsenide, and indium phosphide,” Phys. Rev. B 49(11), 7408–7417 (1994). [CrossRef]
  23. H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B 54(7), 4621–4628 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited