OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11202–11208

Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs)

Basudev Lahiri, Rafal Dylewicz, Richard M. De La Rue, and Nigel P. Johnson  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11202-11208 (2010)
http://dx.doi.org/10.1364/OE.18.011202


View Full Text Article

Enhanced HTML    Acrobat PDF (2136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

At higher frequencies (visible and infrared) both the dimensions and the individual metal properties play an important role in determining the resonant response of arrays of SRRs. As a result, a substantial difference between the responses of gold- and Al-based SRR arrays has been observed. Additionally, deposition of gold SRRs onto a substrate typically involves the use of an additional adhesion layer. Titanium (Ti) is the most common adhesive thin-film material used to attach gold onto dielectric/semiconductor substrates. In this paper we investigate the impact of the Ti adhesion layer on the overall response of Au-based nano-scale SRRs. The results quantify the extent to which the overall difference in the resonance frequencies between Au- and Al-based SRRs is due to the presence of the Ti. We show that even a 2-nm-thick Ti layer can red-shift the position of SRR resonance by 20 nm. Finally, we demonstrate that by intentional addition of titanium in the Au-based SRRs, their overall resonant response can be tuned widely in frequency, but at the expense of resonance magnitude.

© 2010 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(160.3900) Materials : Metals
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Metamaterials

History
Original Manuscript: March 23, 2010
Revised Manuscript: April 14, 2010
Manuscript Accepted: April 30, 2010
Published: May 12, 2010

Citation
Basudev Lahiri, Rafal Dylewicz, Richard M. De La Rue, and Nigel P. Johnson, "Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs)," Opt. Express 18, 11202-11208 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11202


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005). [CrossRef] [PubMed]
  2. S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007). [CrossRef]
  3. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Magnetic response of split ring resonators (SRRs) at visible frequencies,” Opt. Express 18(3), 3210–3218 (2010). [CrossRef] [PubMed]
  4. B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009). [CrossRef]
  5. F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007). [CrossRef]
  6. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009). [CrossRef] [PubMed]
  7. B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009). [CrossRef]
  8. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983). [CrossRef] [PubMed]
  9. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000). [CrossRef]
  10. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  11. E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007). [CrossRef]
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  13. V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009). [CrossRef]
  14. A. David Olver, Microwave and Optical Transmission (John Wiley & Sons Ltd, 1992) Chap. 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited