OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11216–11222

Dielectric metamaterial magnifier creating a virtual color image with far-field subwavelength information

Baile Zhang and George Barbastathis  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11216-11222 (2010)
http://dx.doi.org/10.1364/OE.18.011216


View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an approach for far-field optical subwavelength imaging by using a dielectric metamaterial magnifier with gradient refractive index. Different from previous superlens and hyperlens that form a real image with subwavelength features within narrowband, this magnifier creates a virtual color image with sub-100 nm resolution over broadband that can be captured directly by a conventional microscope in the far field. Because the magnifier is made of isotropic dielectric materials, the fabrication will be greatly simplified with existing metamaterial technologies.

© 2010 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(160.3918) Materials : Metamaterials

ToC Category:
Imaging Systems

History
Original Manuscript: March 29, 2010
Revised Manuscript: May 10, 2010
Manuscript Accepted: May 10, 2010
Published: May 12, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Baile Zhang and George Barbastathis, "Dielectric metamaterial magnifier creating a virtual color image with far-field subwavelength information," Opt. Express 18, 11216-11222 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11216


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
  2. S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316, 1153–1158 (2008). [CrossRef]
  3. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  5. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1597 (2006). [CrossRef]
  6. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]
  7. A. Salandrino, and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 075103 (2006).
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  9. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying Superlens in the Visible Frequency Range,” Science 315, 1699–1701 (2007). [CrossRef] [PubMed]
  10. A. V. Kildishev, and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43–45 (2008). [CrossRef]
  11. D. P. Gaillot, C. Croenne, F. Zhang, and D. Lippens, “Transformation optics for the full dielectric electromagnetic cloak and metal-dielectric planar hyperlens,” N. J. Phys. 10, 115039 (2008). [CrossRef]
  12. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  13. U. Leonhardt, “Optical Conformal Mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  14. U. Leonhardt, and T. G. Philbin, “Transformation Optics and the Geometry of Light,” Prog. Opt. 53, 69 (2009). [CrossRef]
  15. J. R. Wait, Electromagnetic Waves in Stratified Media, (IEEE Press, New York, 1996).
  16. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited