OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11230–11241

Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11230-11241 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1579 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The modulation bandwidth of quantum well nanoLED and nanolaser devices is calculated from the laser rate equations using a detailed model for the Purcell enhanced spontaneous emission. It is found that the Purcell enhancement saturates when the cavity quality-factor is increased, which limits the maximum achievable spontaneous recombination rate. The modulation bandwidth is thereby limited to a few tens of GHz for realistic devices.

© 2010 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.3670) Optical devices : Light-emitting diodes
(320.7090) Ultrafast optics : Ultrafast lasers
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Optical Devices

Original Manuscript: March 31, 2010
Revised Manuscript: May 6, 2010
Manuscript Accepted: May 9, 2010
Published: May 12, 2010

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, "Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission," Opt. Express 18, 11230-11241 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Letters to Nature 425(6961), 944–947 (2003). [CrossRef]
  2. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  3. Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44(1), 657–668 (1991). [CrossRef] [PubMed]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  5. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006). [CrossRef]
  6. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17(10), 7790–7799 (2009). [CrossRef] [PubMed]
  7. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, inc., New York, 1995).
  8. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, inc., New York, 1998)
  9. A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14(4), 761–770 (1997). [CrossRef]
  10. J. D. Joannopoulos, S. G. Johnson, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, New Jersey, 2008).
  11. J.-M. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots”, in Single Quantum Dots, Fundamentals, Applications and New Concepts, P. Michler (Springer, Berlin, 2003), pp. 269–314.
  12. H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66(10), 4801 (1989). [CrossRef]
  13. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3(3), 808 (1997). [CrossRef]
  14. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005). [CrossRef] [PubMed]
  15. S. M. Barnett and R. Loudon, “Sum rule for modified spontaneous emission rates,” Phys. Rev. Lett. 77(12), 2444–2446 (1996). [CrossRef] [PubMed]
  16. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989–3991 (2004). [CrossRef]
  17. M. P. Marder, Condensed Matter Physics (John Wiley & Sons, inc., New York, 2000). [PubMed]
  18. R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. 3(6), 1180–1192 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited