OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11270–11275

Design and simulation of multimode interference based demultiplexers aided by computer-generated planar holograms

Ming-Chan Wu and Shuo-Yen Tseng  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11270-11275 (2010)
http://dx.doi.org/10.1364/OE.18.011270


View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 1.31/1.55 μm multimode interference based wavelength demultiplexer aided by computer-generated planar holograms is proposed. The device length is not limited to the common multiples of the beat lengths for the two wavelengths. The demultiplexer length is chosen as the first self-imaging length for 1.55 μm input, and a computer-generated holographic pattern is used to image the 1.31 μm input to the cross output port. The design and optimization of the holographic pattern is presented. The device performance is investigated using the beam propagation method.

© 2010 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(130.3120) Integrated optics : Integrated optics devices
(230.7380) Optical devices : Waveguides, channeled
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: April 15, 2010
Revised Manuscript: May 7, 2010
Manuscript Accepted: May 11, 2010
Published: May 12, 2010

Citation
Ming-Chan Wu and Shuo-Yen Tseng, "Design and simulation of multimode interference based demultiplexers aided by computer-generated planar holograms," Opt. Express 18, 11270-11275 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11270


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Keiser, Optical Fiber Communications (McGraw-Hill, MA, 2000).
  2. H. Kawata, T. Ogawa, N. Yoshimoto, and T. Sugie, “Multichannel video and IP signal multiplexing system using CWDM technology,” J. Lightwave Technol. 22(6), 1454–1462 (2004). [CrossRef]
  3. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  4. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994). [CrossRef]
  5. K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 [micro sign]m wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996). [CrossRef]
  6. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999). [CrossRef]
  7. M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7(10), 1180–1182 (1995). [CrossRef]
  8. T. W. Mossberg, “Planar holographic optical processing devices,” Opt. Lett. 26(7), 414–416 (2001). [CrossRef]
  9. Y. Sakamaki, T. Saida, T. Hashimoto, and H. Takahashi, “New optical waveguide design based on wavefront matching method,” J. Lightwave Technol. 25(11), 3511–3518 (2007). [CrossRef]
  10. Y. Tsuji and K. Hirayama, “Design of optical circuit devices using topology optimization method with function-expansion-based refractive index distribution,” IEEE Photon. Technol. Lett. 20(12), 982–984 (2008). [CrossRef]
  11. S.-Y. Tseng, Y. Kim, C. J. K. Richardson, and J. Goldhar, “Implementation of discrete unitary transformations by multimode waveguide holograms,” Appl. Opt. 45(20), 4864–4872 (2006). [CrossRef] [PubMed]
  12. S.-Y. Tseng, C. Fuentes-Hernandez, D. Owens, and B. Kippelen, “Variable splitting ratio 2 x 2 MMI couplers using multimode waveguide holograms,” Opt. Express 15(14), 9015–9021 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-9015 . [CrossRef] [PubMed]
  13. S.-Y. Tseng, S. K. Choi, and B. Kippelen, “Variable-ratio power splitters using computer-generated planar holograms on multimode interference couplers,” Opt. Lett. 34(4), 512–514 (2009). [CrossRef] [PubMed]
  14. S.-Y. Tseng, “Diffraction engineering of multimode waveguides using computer-generated planar holograms,” Opt. Express 17(24), 21465–21471 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21465 . [CrossRef] [PubMed]
  15. S.-Y. Tseng, and M.-C. Wu, “Adiabatic mode conversion in multimode waveguides using computer-generated planar holograms,” submitted (2010).
  16. The Dow Chemical Company, “CYCLOTENE Advanced Electronics Resins,” www.dow.com/cyclotene
  17. R. W. Boyd, Nonlinear Optics (Academic, CA, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited