OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11292–11299

Optimization of bull’s eye structures for transmission enhancement

O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garcia-Vidal, Sergio G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11292-11299 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (977 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an exhaustive exploration of the parameter space defining the optical properties of a bull’s eye structure, both experimentally and theoretically. By studying the resonance intensity variations associated with the different geometrical features, several parameters are seen to be interlinked and scale laws emerge. From the results it is possible to give a simple recipe to design a bull’s eye structure with optimal transmission properties.

© 2010 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1960) Diffraction and gratings : Diffraction theory
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: February 24, 2010
Revised Manuscript: May 1, 2010
Manuscript Accepted: May 3, 2010
Published: May 13, 2010

O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garcia-Vidal, Sergio G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, "Optimization of bull’s eye structures for transmission enhancement," Opt. Express 18, 11292-11299 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  5. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef]
  6. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002). [CrossRef]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  8. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003). [CrossRef] [PubMed]
  9. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003). [CrossRef] [PubMed]
  10. F. J. Garcia-Vidal, L Martin-Moreno, H. J. Lezec, and T. W Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003). [CrossRef]
  11. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004). [CrossRef] [PubMed]
  12. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005). [CrossRef]
  13. S. Shimada, J. Hashijume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003). [CrossRef]
  14. B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007). [CrossRef]
  15. N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008). [CrossRef]
  16. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009). [CrossRef]
  17. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008). [CrossRef] [PubMed]
  18. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008). [CrossRef]
  19. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008). [CrossRef] [PubMed]
  20. F. I. Baida, D. Van Labeke, and B. Guizal, “Enhanced confined light transmission by single subwavelength apertures in metallic films,” Appl. Opt. 42(34), 6811–6815 (2003). [CrossRef] [PubMed]
  21. A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13(9), 3535–3542 (2005). [CrossRef] [PubMed]
  22. M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005). [CrossRef]
  23. T. Ishi, J. Fujikata, and K. Ohashi, “Large Optical Transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating,” Jpn. J. Appl. Phys. 44(4), L170–L172 (2005). [CrossRef]
  24. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett. 31(15), 2341–2343 (2006). [CrossRef] [PubMed]
  25. P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Opt. Express 15(13), 7984–7993 (2007). [CrossRef] [PubMed]
  26. N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express 16(8), 5832–5837 (2008). [CrossRef] [PubMed]
  27. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006). [CrossRef]
  28. E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44(29), 6141–6154 (2005). [CrossRef] [PubMed]
  29. N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express 16(3), 2276–2287 (2008). [CrossRef] [PubMed]
  30. O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99(4), 043902 (2007). [CrossRef] [PubMed]
  31. Y. Cui and S. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express 17(16), 13995–14000 (2009). [CrossRef] [PubMed]
  32. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10(10), 105017 (2008). [CrossRef]
  33. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004). [CrossRef]
  34. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008). [CrossRef] [PubMed]
  35. F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006). [CrossRef]
  36. J. A. Sanchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett. 73(24), 3509–3511 (1998). [CrossRef]
  37. M. Kuttge, F. J. García de Abajo, and A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009). [CrossRef] [PubMed]
  38. F. López-Tejeira, F. García-Vidal, L. Martín-Moreno, F. J García-Vidal, and L Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005). [CrossRef]
  39. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited