OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11335–11346

Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation

Xin Li, Fu-Jen Kao, Chien-Chin Chuang, and Sailing He  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11335-11346 (2010)
http://dx.doi.org/10.1364/OE.18.011335


View Full Text Article

Enhanced HTML    Acrobat PDF (2037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nano-composites of quantum dots (QDs) and gold nanorods (GNRs) or silica-coated GNRs (GNRs_SiO2) were synthesized. The attached GNRs modify the excitation intensity and spontaneous emission of QDs through the surface plasmonic effects. The fluorescence from QDs is enhanced and can be optimized by modifying the thickness of silica coated on GNRs, under both one- and two-photon excitations. The measurements of fluorescence intensity and lifetime demonstrate that the enhancement may be attributed to the matching of the localized surface plasmon resonance of GNR to the excitation wavelength. In addition to enhancing QD-fluorescence in QD-GNR@SiO2, GNRs also present as an effective contrast agent for bio-imaging, through light scattering and or two-photon emission, as well as for photo-thermal therapy. The composite’s multifunctional characteristics are highly valuable and to be exploited in bio-applications.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: April 8, 2010
Revised Manuscript: May 9, 2010
Manuscript Accepted: May 9, 2010
Published: May 13, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Xin Li, Fu-Jen Kao, Chien-Chin Chuang, and Sailing He, "Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation," Opt. Express 18, 11335-11346 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998). [CrossRef] [PubMed]
  2. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998). [CrossRef] [PubMed]
  3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  4. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47(4), 233–236 (1981). [CrossRef]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  6. Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).
  7. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009). [CrossRef] [PubMed]
  8. Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18(41), 415707 (2007). [CrossRef]
  9. Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008). [CrossRef]
  10. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002). [CrossRef]
  11. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  12. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007). [CrossRef] [PubMed]
  13. J. Zhang and J. R. Lakowicz, “Metal-enhanced fluorescence of an organic fluorophore using gold particles,” Opt. Express 15(5), 2598–2606 (2007). [CrossRef] [PubMed]
  14. J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006). [CrossRef]
  15. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007). [CrossRef] [PubMed]
  16. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  17. M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863 (2004). [CrossRef]
  18. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006). [CrossRef]
  19. H. C. Van de Hulst, Light scattering by small particles, (Wiley-Interscience, New York, 1957).
  20. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999). [CrossRef]
  21. B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003). [CrossRef]
  22. X. Li, J. Qian, and S. He, “Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing,” Nanotechnology 19(35), 355501 (2008). [CrossRef] [PubMed]
  23. R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008). [CrossRef]
  24. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  25. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). [CrossRef] [PubMed]
  26. X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008). [CrossRef] [PubMed]
  27. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  28. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007). [CrossRef] [PubMed]
  29. Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008). [CrossRef]
  30. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002). [CrossRef] [PubMed]
  31. T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007). [CrossRef]
  32. X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94(6), 063111 (2009). [CrossRef]
  33. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005). [CrossRef] [PubMed]
  34. J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-excition interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004). [CrossRef]
  35. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparitcles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]
  36. G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007). [CrossRef] [PubMed]
  37. P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010). [CrossRef] [PubMed]
  38. Q. Q. Zhan, J. Qian, X. Li, and S. He, “A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging,” Nanotechnology 21(5), 055704 (2010). [CrossRef]
  39. V. Ghukasyan, Y. Y. Hsu, S. H. Kung, and F. J. Kao, “Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells,” J. Biomed. Opt. 12(2), 024016 (2007). [CrossRef] [PubMed]
  40. V. Ghukasyan and F. J. Kao, “Monitoring Cellular Metabolism with Fluorescence Lifetime of Reduced Nicotinamide Adenine Dinucleotide,” J. Phys. Chem. C 113(27), 11532–11540 (2009). [CrossRef]
  41. R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009). [CrossRef]
  42. B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002). [CrossRef]
  43. C. Wang, Z. Ma, T. Wang, and Z. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006). [CrossRef]
  44. J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16(5), 3008–3020 (2008). [CrossRef] [PubMed]
  45. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008). [CrossRef]
  46. S. He, Y. Cui, Y. Ye, P. Zhang, and Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009). [CrossRef]
  47. A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” J. Am. Chem. Soc. 127(4), 1242–1250 (2005). [CrossRef] [PubMed]
  48. O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003). [CrossRef]
  49. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  50. C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited