OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11428–11443

Optical forces on small magnetodielectric particles

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11428-11443 (2010)
http://dx.doi.org/10.1364/OE.18.011428


View Full Text Article

Enhanced HTML    Acrobat PDF (1133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a study of the optical force on a small particle with both electric and magnetic response, immersed in an arbitrary non-dissipative medium, due to a generic incident electromagnetic field. This permits us to establish conclusions for any sign of this medium refractive index. Expressions for the gradient force, radiation pressure and curl components are obtained for the force due to both the electric and magnetic dipoles excited in the particle. In particular, for the magnetic force we tentatively introduce the concept of curl of the spin angular momentum density of the magnetic field, also expressed in terms of 3D generalizations of the Stokes parameters. From the formal analogy between the conservation of momentum and the optical theorem, we discuss the origin and significance of the electric-magnetic dipolar interaction force; this is done in connection with that of the angular distribution of scattered light and of the extinction cross section.

© 2010 Optical Society of America

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(290.5825) Scattering : Scattering theory

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: March 22, 2010
Revised Manuscript: April 23, 2010
Manuscript Accepted: April 26, 2010
Published: May 14, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, "Optical forces on small magnetodielectric particles," Opt. Express 18, 11428-11443 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  3. K. C. Neuman, and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  4. L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, Cambridge, 2006).
  5. P. C. Chaumet, and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000). [CrossRef]
  6. P. C. Chaumet, and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000). [CrossRef]
  7. P. C. Chaumet, A. Rahmani, and M. Nieto-vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601–123604 (2002). [CrossRef] [PubMed]
  8. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near field photonic forces,” Philos. Trans. R. Soc. Lond. A 362, 719–737 (2004). [CrossRef]
  9. P. Verkerk, B. Lounis, C. Salomon, and C. Cohen-Tannoudji, “Dynamics and spatial order of cold cesium atoms in a periodic optical potential,” Phys. Rev. Lett. 68, 3861–3864 (1992). [CrossRef]
  10. P. S. Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and C. I. Westbrook, “Observation of quantized motion of Rb atoms in an optical field,” Phys. Rev. Lett. 69, 49–52 (1992). [CrossRef] [PubMed]
  11. A. Hemmerich, and T. W. Hänsch, “Two-dimensional atomic crystal bound by light,” Phys. Rev. Lett. 70, 410–413 (1993). [CrossRef] [PubMed]
  12. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical Binding,” Phys. Rev. Lett. 63, 1233–1236 (1989). [CrossRef] [PubMed]
  13. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical Matter: Crystallization and Binding in Intense Optical Fields,” Science 249, 749–754 (1990). [CrossRef] [PubMed]
  14. P. C. Chaumet, and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64, 035422–0354227 (2001). [CrossRef]
  15. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-Dimensional Optically Bound Arrays of Microscopic Particles,” Phys. Rev. Lett. 89, 283901–283904 (2002). [CrossRef]
  16. R. Gómez-Medina, and J. J. Sáenz, “Unusually Strong Optical Interactions between Particles in Quasi-One-Dimensional Geometries,” Phys. Rev. Lett. 93, 243602–243605 (2004). [CrossRef]
  17. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375–5401 (2004). [CrossRef] [PubMed]
  18. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13, 9280–9291 (2005). [CrossRef] [PubMed]
  19. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field in magnetic media,” Opt. Express 15, 13502–13517 (2007). [CrossRef] [PubMed]
  20. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing Mie particles,” Phys. Rev. Lett. 97, 1339021–1339024 (2006). [CrossRef]
  21. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Lorentz force on dielectric and magnetic particles,” J. Electromagn. Waves Appl. 20, 827–839 (2006). [CrossRef]
  22. A. Lakhtakia, “Radiation pressure efficiencies of spheres made of isotropic, achiral, passive, homogeneous, negative-phase-velocity materials,” Electromagnetics 28, 346–353 (2008). [CrossRef]
  23. A. Lakhtakia, and G. W. Mulholland, “On two numerical techniques for light scattering by dielectric agglomerated structures,” J. Res. Natl. Inst. Stand. Technol. 98, 699–716 (1993).
  24. P. C. Chaumet, and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express 17, 2224–2234 (2009). [CrossRef] [PubMed]
  25. S. Albaladejo, M. I. Marques, M. Laroche, and J. J. Saenz, “Scattering Forces from the Curl of the Spin Angular momentum of a Light Field,” Phys. Rev. Lett. 102, 1136021–1136024 (2009). [CrossRef]
  26. J. D. Jackson, Classical Electrodynamics, (3rd edition, John Wiley, New York, 1998).
  27. J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, “Optical forces on small particles. Attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003). [CrossRef]
  28. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge U.P., Cambridge, 1995).
  29. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, (2nd edition, World Scientific, Singapore, 2006).
  30. N. J. Moore, M. A. Alonso, and C. J. R. Sheppard, “Monochromatic scalar fields with maximum focal irradiance,” J. Opt. Soc. Am. A 24, 2057–2064 (2007). [CrossRef]
  31. N. J. Moore, and M. A. Alonso, “Closed-form bases for the description of monochromatic, strongly focused, electromagnetic fields,” J. Opt. Soc. Am. A 26, 2211–2218 (2009). [CrossRef]
  32. G. C. Sherman, “Diffracted wavefields expressible by plane wave expansions containing only homogeneous waves,” Phys. Rev. Lett. 21, 761–764 (1968). [CrossRef]
  33. M. Born, and E. Wolf, Principles of Optics, 7 th edition, Cambridge U.P., Cambridge, 1999.
  34. P. Chylek, and R. G. Pinnick, “Nonunitarity of the light scattering approximations,” Appl. Opt. 18, 1123–1124 (1979). [CrossRef] [PubMed]
  35. J. A. Lock, J. T. Hodges, and G. Gouesbet, “Failure of the optical theorem for Gaussian-beam scattering by a spherical particle,” J. Opt. Soc. Am. 12, 2708–2715 (1995). [CrossRef]
  36. B. Garcia-Camara, F. Moreno, F. Gonzalez, and J. M. Saiz, “Comment on Experimental Evidence of Zero Forward Scattering by Magnetic Spheres,” Phys. Rev. Lett. 98, 179701–179704 (2007). [CrossRef]
  37. A. Alu, and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102, 233901–233904 (2009). [CrossRef]
  38. P. C. Chaumet, and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  39. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Ap. J. 333, 848–872 (1988). [CrossRef]
  40. We acknowledge this remark in a private communication from an anonymous reviewer.
  41. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley, New York, 1998). [CrossRef]
  42. P. Chýlek, J. T. Kiehl, and K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978). [CrossRef] [PubMed]
  43. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd revised edition (Pergamon Press, Oxford, 1984).
  44. V. G. Veselago, “The electrodynamics of substances with simultaneous negative values of e and m,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  45. V. Wong, and M. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 0754161–0754166 (2006). [CrossRef]
  46. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt. 4, S7–S16 (2002). [CrossRef]
  47. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  48. . Notice that in ref. [25], the equation giving LSe has the opposite sign. However, the actual force (in S.I. units) is exactly the same as the one derived here in Gaussian units.
  49. In paraxial beams, the helicity is given by the projection of the spin on the propagation direction. If the helicity is not uniform, the curl of the spin would be, in general, different from zero. The spin curl term would then be relevant for optical beams with non-uniform helicity. However, a non-uniform spin density does not imply a non-uniform helicity: we may have non-zero curl force even if the helicity is zero, as it is the case for the standing waves with p-polarized beams discussed in [25]. (Yiqiao Tang, Harvard University, private communication).
  50. T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 0166151–0166158 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited