OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11444–11449

Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching

Yang Tan and Feng Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11444-11449 (2010)
http://dx.doi.org/10.1364/OE.18.011444


View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a new, simple method to fabricate optical ridge waveguides in a z-cut LiNbO3 wafer by using proton implantation and selective wet etching. The measured modal field is well confined in the ridge waveguide region, which is also confirmed by the numerical simulation. With thermal annealing treatment at 400°C, the propagation loss of the ridge waveguides is determined to be as low as ~0.9 dB/cm. In addition, the measured thermo-optic coefficients of the waveguides are in good agreement with those of the bulk, suggesting potential applications in integrated photonics.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 23, 2010
Revised Manuscript: May 7, 2010
Manuscript Accepted: May 11, 2010
Published: May 14, 2010

Citation
Yang Tan and Feng Chen, "Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching," Opt. Express 18, 11444-11449 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004). [CrossRef]
  2. M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009). [CrossRef]
  3. W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008). [CrossRef]
  4. G. Lifante, Integrated Photonics: Fundamentals ‖Wiley, Atrium, 2008|.
  5. M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009). [CrossRef]
  6. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007). [CrossRef] [PubMed]
  7. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]
  8. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]
  9. A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009). [CrossRef]
  10. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006). [CrossRef]
  11. P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt. 45(10), 2273–2278 (2006). [CrossRef] [PubMed]
  12. P. D. Townsend, P. J. Chandler, and L. Zhang, “Optical Effects of Ion Implantation” (Cambridge Univ. Press, Cambridge, 1994).
  13. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]
  14. F. Schrempel, Th. Gischkat, H. Hartung, Th. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009). [CrossRef] [PubMed]
  15. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998). [CrossRef]
  16. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009). [CrossRef]
  17. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008). [CrossRef] [PubMed]
  18. M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008). [CrossRef]
  19. H. Hartung, E.-B. Kley, A. Tünnermann, Th. Gischkat, F. Schrempel, and W. Wesch, “Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching,” Opt. Lett. 33(20), 2320–2322 (2008). [CrossRef] [PubMed]
  20. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005). [CrossRef]
  21. I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999). [CrossRef]
  22. S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007). [CrossRef]
  23. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]
  24. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009). [CrossRef]
  25. Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009). [CrossRef]
  26. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986). [CrossRef]
  27. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992). [CrossRef] [PubMed]
  28. R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985). [CrossRef]
  29. W. C. Liu, C. L. Mak, and K. H. Wong, “Thermo-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 waveguides and their application as optical modulator,” Opt. Express 17(16), 13677–13684 (2009). [CrossRef] [PubMed]
  30. M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009). [CrossRef]
  31. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  32. F. Schrempel, Th. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1-2), 164–168 (2006). [CrossRef]
  33. M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited