OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11464–11471

Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors

Li-Yang Shao, Yanina Shevchenko, and Jacques Albert  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11464-11471 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A miniature surface plasmon resonance sensor is fabricated from a gold-coated standard optical fiber with an in-core tilted fiber Bragg grating fabricated by UV exposure. The sensor has a measured refractive index sensitivity of 571.5 nm/RIU (refractive index unit) at constant temperature. We show here that the intrinsic temperature sensitivity of this device is reduced to less than 6.3 pm/°C (between 23 °C and 59 °C) when measurements are referenced to a core mode reflection resonance of the grating. This residual sensitivity is essentially that of the 50 nm thick deposited gold layer but it is bigger by one order of magnitude than the expected value (0.51 pm/°C) for a gold-water interface.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:

Original Manuscript: April 12, 2010
Revised Manuscript: May 4, 2010
Manuscript Accepted: May 4, 2010
Published: May 14, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Li-Yang Shao, Yanina Shevchenko, and Jacques Albert, "Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors," Opt. Express 18, 11464-11471 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988). [CrossRef] [PubMed]
  2. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993). [CrossRef]
  3. R. Slavík, J. Homola, J. Tyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001). [CrossRef]
  4. J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006). [CrossRef]
  5. J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009). [CrossRef] [PubMed]
  6. B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-23254 . [CrossRef]
  7. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007). [CrossRef] [PubMed]
  8. Y. Y. Shevchenko, D. A. D. Blair, M. C. Derosa, and J. Albert, “DNA Target Detection Using Gold-coated Tilted Fiber Bragg Gratings in Aqueous Media,” CLEO/QELS 2008, San Jose, CA, CMJ4 (2008).
  9. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt. 46(22), 5456–5460 (2007). [CrossRef] [PubMed]
  10. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, ““Side-Polished Optical Fiber Grating-Based Refractive Index Sensors Utilizing the Pure Surface Plasmon Polariton,” IEEE/OSA,” J. Lightwave Technol. 26(13), 1980–1985 (2008). [CrossRef]
  11. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31(14), 2118–2120 (2006). [CrossRef] [PubMed]
  12. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010). [CrossRef] [PubMed]
  13. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007). [CrossRef] [PubMed]
  14. H.-P. Chiang, Y.-C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003). [CrossRef]
  15. K. Lin, Y. Lu, Z. Luo, R. Zheng, P. Wang, and H. Ming, “Numerical and experimental investigation of temperature effects on the surface plasmon resonance sensor,” Chin. Opt. Lett. 7(5), 428–431 (2009). [CrossRef]
  16. S. K. Ozdemir and G. Turhan-Sayan, ““Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” IEEE/OSA,” J. Lightwave Technol. 21(3), 805–814 (2003). [CrossRef]
  17. C. K. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9645 . [CrossRef] [PubMed]
  18. The International Association for the Properties of Water and Steam, “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure,” IAPWS, Erlangen, pp.2 (1997).
  19. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited