OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11483–11494

Vibrational sum frequency generation spectroscopy using inverted visible pulses

Champika Weeraman, Steven A. Mitchell, Rune Lausten, Linda J. Johnston, and Albert Stolow  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11483-11494 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1094 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a broadband vibrational sum frequency generation (BB-VSFG) scheme using a novel ps visible pulse shape. We generate the fs IR pulse via standard procedures and simultaneously generate an ‘inverted’ time-asymmetric narrowband ps visible pulse via second harmonic generation in the pump depletion regime using a very long nonlinear crystal which has high group velocity mismatch (LiNbO3). The ‘inverted’ ps pulse shape minimally samples the instantaneous nonresonant response but maximally samples the resonant response, maintaining high spectral resolution. We experimentally demonstrate this scheme, presenting SFG spectra of canonical organic monolayer systems in the C-H stretch region (2800-3000 cm−1).

© 2010 OSA

OCIS Codes
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Optics at Surfaces

Original Manuscript: March 29, 2010
Revised Manuscript: April 29, 2010
Manuscript Accepted: May 6, 2010
Published: May 14, 2010

Champika Weeraman, Steven A. Mitchell, Rune Lausten, Linda J. Johnston, and Albert Stolow, "Vibrational sum frequency generation spectroscopy using inverted visible pulses," Opt. Express 18, 11483-11494 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144(1), 1–5 (1988). [CrossRef]
  2. M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000). [CrossRef] [PubMed]
  3. J. C. Conboy, M. C. Messmer, and G. L. Richmond, “Investigation of surfactant conformation and order at the liquid-liquid interface by total internal reflection sum-frequency vibrational spectroscopy,” J. Phys. Chem. 100(18), 7617–7622 (1996). [CrossRef]
  4. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23(20), 1594–1596 (1998). [CrossRef]
  5. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 mu m) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1-3), 177–183 (2000). [CrossRef]
  6. M. K. Reed and M. K. S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32(8), 1273–1277 (1996). [CrossRef]
  7. H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernández, X. K. Chen, and C. Y. Tang, “Shedding light on water structure at air-aqueous interfaces: ions, lipids, and hydration,” Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009). [CrossRef] [PubMed]
  8. A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, “Coherent vibrational quantum beats as a probe of Langmuir-Blodgett monolayers,” J. Phys. Chem. B 109(33), 15941–15949 (2005). [CrossRef]
  9. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007). [CrossRef]
  10. M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007). [CrossRef]
  11. P. Guyot-Sionnest, “Coherent processes at surfaces: Free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111),” Phys. Rev. Lett. 66(11), 1489–1492 (1991). [CrossRef] [PubMed]
  12. J. C. Diels, and W. Rudolph, Ultrafast Laser Pulse Phenomena (Academic Press, 1996).
  13. J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12(1), 7–9 (1968). [CrossRef]
  14. M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003). [CrossRef]
  15. M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, “Self-assembly of n-alkanethiol monolayers. A study by IR-visible sum frequency spectroscopy (SFG),” J. Phys. Chem. B 104(3), 576–584 (2000). [CrossRef]
  16. I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited