OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11524–11529

Widely tunable electro-optic distributed Bragg reflector in liquid crystal waveguide

Giovanni Gilardi, Rita Asquini, Antonio d’Alessandro, and Gaetano Assanto  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11524-11529 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1757 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and numerically investigate a versatile and easy-to-realize configuration for a guided-wave voltage-tunable distributed feedback grating based on reorientation in nematic liquid crystal and coplanar comb electrodes. The device has a wide tuning range exceeding 100 nm and covers C and L bands for wavelength division multiplexing.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1480) Optical devices : Bragg reflectors
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: February 19, 2010
Revised Manuscript: April 14, 2010
Manuscript Accepted: April 24, 2010
Published: May 14, 2010

Giovanni Gilardi, Rita Asquini, Antonio d’Alessandro, and Gaetano Assanto, "Widely tunable electro-optic distributed Bragg reflector in liquid crystal waveguide," Opt. Express 18, 11524-11529 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and Characterization of Narrow-Band Bragg-Reflection Filters in Silicon-on-Insulator Ridge Waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001). [CrossRef]
  2. K. J. Kim, J. K. Seo, and M. C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008). [CrossRef] [PubMed]
  3. G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006). [CrossRef]
  4. M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three dimensional hollow waveguide,” Appl. Phys. Lett. 94(6), 061112 (2009). [CrossRef]
  5. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008). [CrossRef]
  6. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009). [CrossRef] [PubMed]
  7. V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009). [CrossRef] [PubMed]
  8. H. Zou, K. W. Beeson, and L. W. Shacklette, “Tunable planar polymer Bragg gratings having exceptionally low polarization sensitivity,” J. Lightwave Technol. 21(4), 1083–1088 (2003). [CrossRef]
  9. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11(7), 1189–1195 (1993). [CrossRef]
  10. I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express 17(21), 18518–18524 (2009). [CrossRef]
  11. S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007). [CrossRef]
  12. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009). [CrossRef] [PubMed]
  13. F. Heismann, L. L. Buhl, and R. Alferness, “Electro-optically tunable, narrowband Ti:LiNbO3 wavelength filter,” Electron. Lett. 23(11), 572–574 (1987). [CrossRef]
  14. A. d’Alessandro, D. A. Smith, and J. E. Baran, “Polarisation-independent low power integrated acousto-optic tunable filter/switch using APE/Ti polarisation splitters on lithium niobate,” Electron. Lett. 29(20), 1767–1769 (1993). [CrossRef]
  15. F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994). [CrossRef]
  16. A. Iocco, H. G. Limberger, R. Salathe, L. A. Everall, K. Chisholm, J. Williams, and I. Bennion, “Bragg gratings fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17(7), 1217–1221 (1999). [CrossRef]
  17. B. Srinivasan and R. K. Jain, “First demonstration of thermally poled electrooptically tunable fiber Bragg gratings,” Photon. Technol. Lett. 12(2), 170–172 (2000). [CrossRef]
  18. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90nm using a simple tuning package,” Photon. Technol. Lett. 15(4), 557–559 (2003). [CrossRef]
  19. A. Hosseini and Y. Massoud, “A low-loss metal-insulator plasmonic Bragg reflector,” Opt. Express 14(23), 11318–11323 (2006). [CrossRef]
  20. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17(16), 13727–13736 (2009). [CrossRef] [PubMed]
  21. I. Fujieda, O. Mikami, and A. Ozawa, “Active optical interconnect based on liquid-crystal grating,” Appl. Opt. 42(8), 1520–1525 (2003). [CrossRef] [PubMed]
  22. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009). [CrossRef] [PubMed]
  23. D. Donisi, A. d’Alessandro, R. Asquini, R. Beccherelli, L. De Sio, R. Caputo, and C. Umeton, “Realization of an optical filter using POLICRYPS holographic gratings on glass waveguides,” Mol. Cryst. Liq. Cryst . 486, 31/[1073]-37/[1079] (2008)
  24. F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100 GHz electrically tunable liquid-crystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32(11), 1542–1544 (2007). [CrossRef] [PubMed]
  25. A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008). [CrossRef] [PubMed]
  26. G. Assanto and G. I. Stegeman, “Optical bistability in nonlocally nonlinear periodic structures,” Appl. Phys. Lett. 56(23), 2285–2287 (1990). [CrossRef]
  27. G. Assanto, “All-optical integrated nonlinear devices,” J. Mod. Opt. 37, 855–863 (1990). [CrossRef]
  28. J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56(7), 602–604 (1990). [CrossRef]
  29. C. Conti, G. Assanto, and S. Trillo, “Excitation of self-transparency Bragg solitons in quadratic media,” Opt. Lett. 22(17), 1350–1352 (1997). [CrossRef]
  30. D. Donisi, R. Asquini, A. d’Alessandro, and G. Assanto, “Distributed feedback grating in liquid crystal waveguide: a novel approach,” Opt. Express 17(7), 5251–5256 (2009). [CrossRef] [PubMed]
  31. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (2756 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited