OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11537–11551

Broadband cloaking and mirages with flying carpets

André Diatta, Guillaume Dupont, Sébastien Guenneau, and Stefan Enoch  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11537-11551 (2010)
http://dx.doi.org/10.1364/OE.18.011537


View Full Text Article

Enhanced HTML    Acrobat PDF (1386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper extends the proposal of Li and Pendry [Phys. Rev. Lett. 101, 203901-4 (2008)] to invisibility carpets for infinite conducting planes and cylinders (or rigid planes and cylinders in the context of acoustic waves propagating in a compressible fluid). Carpets under consideration here do not touch the ground: they levitate in mid-air (or float in mid-water), which leads to approximate cloaking for an object hidden underneath, or touch either sides of a square cylinder on, or over, the ground. The tentlike carpets attached to the sides of a square cylinder illustrate how the notion of a carpet on a wall naturally generalizes to sides of other small compact objects. We then extend the concept of flying carpets to circular cylinders and show that one can hide any type of defects under such circular carpets, and yet they still scatter waves just like a smaller cylinder on its own. Interestingly, all these carpets are described by non-singular parameters. To exemplify this important aspect, we propose a multi-layered carpet consisting of isotropic homogeneous dielectrics rings (or fluids with constant bulk modulus and varying density) which works over a finite range of wavelengths.

© 2010 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(160.1050) Materials : Acousto-optical materials
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Physical Optics

History
Original Manuscript: April 1, 2010
Revised Manuscript: May 13, 2010
Manuscript Accepted: May 13, 2010
Published: May 17, 2010

Citation
André Diatta, Guillaume Dupont, Sébastien Guenneau, and Stefan Enoch, "Broadband cloaking and mirages with flying carpets," Opt. Express 18, 11537-11551 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11537


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of sigma and mu,” Usp. Fiz. Nauk 92, 517 (1967).
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 86, 3966–3969 (2000). [CrossRef]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]
  4. S. A. Ramakrishna, “Physics of negative refraction,” Rep. Prog. Phys. 68, 449 (2005). [CrossRef]
  5. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479–8482 (1994). [CrossRef]
  6. G. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. Roy. Soc. Lond. A 462, 3027 (2006). [CrossRef]
  7. A. Alu and N. Engheta, “Achieving Transparency with Plasmonic and Metamaterial Coatings,” Phys. Rev. E 95, 016623 (2005). [CrossRef]
  8. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  9. J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  11. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and mirage effect,” Opt. Lett. 32, 1069–1071 (2007). [CrossRef] [PubMed]
  12. A. Diatta, S. Guenneau, A. Nicolet, and F. Zolla, “Tessellated and stellated invisibility,” Opt. Express 17, 13389–13394 (2009). [CrossRef] [PubMed]
  13. A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for Calderons inverse problem,” Math. Res. Lett. 10, 685–693 (2003).
  14. R.V . Kohn, H. Shen, M. S. Vogelius, and M. I. Weinstein, “Cloaking via change of variables in electric impedance tomography,” Inverse Probl. 24, 015016 (2008). [CrossRef]
  15. R. Weder, “A Rigorous Analysis of High-Order Electromagnetic Invisibility Cloaks,” J. Phys. A: Mathematical and Theoretical 41, 065207 (2008). [CrossRef]
  16. R. Weder, “The Boundary Conditions for Point Transformed Electromagnetic Invisibility Cloaks,” J. Phys. A: Mathematical and Theoretical 41, 415401 (2008). [CrossRef]
  17. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” N. J. Phys. 9, 45 (2007). [CrossRef]
  18. D. Torrent and J. Sanchez-Dehesa, “Anisotropic mass density by two-dimensional acoustic metamaterials,” N. J. Phys. 10, 023004 (2008). [CrossRef]
  19. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering Theory Derivation of a 3D Acoustic Cloaking Shell,” Phys. Rev. Lett. 100, 024301 (2008). [CrossRef] [PubMed]
  20. H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007). [CrossRef]
  21. M. Farhat, S. Guenneau, S. Enoch, A. B. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” N. J. Phys. 10, 115030 (2008). [CrossRef]
  22. M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, “Cloaking bending waves propagating in thin elastic plates,” Phys. Rev. B 79, 033102 (2009). [CrossRef]
  23. M. Farhat, S. Guenneau and S. Enoch, “Ultrabroadband Elastic Cloaking in Thin Plates,” Phys. Rev. Lett. 103, 024301 (2009). [CrossRef] [PubMed]
  24. G.W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” N. J. Phys. 8, 248 (2006). [CrossRef]
  25. M. Brun, S. Guenneau, and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phys. Lett. 94, 061903 (2009). [CrossRef]
  26. A. N. Norris, “Acoustic cloaking theory,” Proc. Roy. Soc. Lond. A 464, 2411 (2008). [CrossRef]
  27. D. Bigoni, S. K. Serkov, M. Valentini, and A. B. Movchan, “Asymptotic models of dilute composites with imperfectly bonded inclusions,” Int. J. Solids Structures 35, 3239 (1998). [CrossRef]
  28. X. Hu, Y. Shen, X. Liu, R. Fu, J. Zi, X. Jiang, and S. Feng, “Band structures and band gaps of liquid surface waves propagating through an infinite array of cylinders,” Phys. Rev. E 68, 037301 (2003). [CrossRef]
  29. L. Feng, X. P. Liu, M. H. Lu, Y. B. Chen, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Refraction control of acoustic waves in a square-rod-constructed tunable sonic crystal,” Phys. Rev. B 73, 193101 (2006). [CrossRef]
  30. M. Farhat, S. Guenneau, S. Enoch, G. Tayeb, A. B. Movchan, and N. V. Movchan, “Analytical and numerical analysis of lensing effect for linear surface water waves through a square array of nearly touching rigid square cylinders,” Phys. Rev. E 77, 046308 (2008). [CrossRef]
  31. S. Zhang, L. Yin, and N. Fang, “Focusing ultrasound with an acoustic metamaterial network,” Phys. Rev. Lett. 102, 194301 (2009). [CrossRef] [PubMed]
  32. A. Sukhovich, L. Jing, and J. H. Page, “Negative refraction and focusing of ultrasound in two-dimensional phononic crystals,” Phys. Rev. B 77, 014301 (2008). [CrossRef]
  33. M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phys. Rev. Lett. 101, 134501 (2008). [CrossRef] [PubMed]
  34. J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  35. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323, 366 (2008). [CrossRef]
  36. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461-463 (2009). [CrossRef]
  37. F. Zolla and S. Guenneau, “A duality relation for the Maxwell system,” Phys. Rev. E 67, 026610 (2003). [CrossRef]
  38. J. B. Pendry and J. Li, “An acoustic metafluid: realizing a broadband acoustic cloak,” N. J. Phys. 10, 115032 (2008). [CrossRef]
  39. E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009). [CrossRef]
  40. N. A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” N. J. Phys. 10, 115020 (2008). [CrossRef]
  41. Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102, 093901 (2009). [CrossRef] [PubMed]
  42. A. Nicolet, F. Zolla, and C. Geuzaine, “Generalized Cloaking and Optical Polyjuice,” ArXiv:0909.0848v1.
  43. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev and V. M. Shalaev, “Anisotropic Metamaterials Emulated by Tapered Waveguides: Application to Optical Cloaking,” Phys. Rev. Lett. 102, 213901 (2009). [CrossRef] [PubMed]
  44. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “llusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef] [PubMed]
  45. J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited