OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11599–11606

Evolution of the pairs of ultracold Rydberg atoms in the repulsive potential

Linjie Zhang, Zhigang Feng, Jianming Zhao, Changyong Li, and Suotang Jia  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11599-11606 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1210 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the explicit dynamics process of Rydberg cesium atoms initially experiencing a repulsive van der Waals (vdW) interaction by measuring the line width and intensity of the Rydberg ionization spectra. The signals of Rydberg atoms and free ions are recorded simultaneously within an initial 3.5 μs delay time between the excitation laser and the ramp electric field. For high-density gases, a rapid decrease of Rydberg atoms and an increase of free ions are observed, which is not found to be the case for low-density gases. The experimental results indicate that superradiance is the main cause of the redistribution of Rydberg atoms from the repulsive potential to the attractive potential for high density, which provides the initial ionization. The corresponding theoretical calculation is also given.

© 2010 OSA

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(020.5780) Atomic and molecular physics : Rydberg states
(270.6630) Quantum optics : Superradiance, superfluorescence
(300.6350) Spectroscopy : Spectroscopy, ionization

ToC Category:
Atomic and Molecular Physics

Original Manuscript: January 14, 2010
Revised Manuscript: March 19, 2010
Manuscript Accepted: April 27, 2010
Published: May 18, 2010

Linjie Zhang, Zhigang Feng, Jianming Zhao, Changyong Li, and Suotang Jia, "Evolution of the pairs of ultracold Rydberg atoms in the repulsive potential," Opt. Express 18, 11599-11606 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000). [CrossRef] [PubMed]
  2. M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001). [CrossRef] [PubMed]
  3. W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett. 80, 249–252 (1998). [CrossRef]
  4. I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998). [CrossRef]
  5. D. Tong, S. Farooqi, J. Stanojevic, S. Krishnan, Y. Zhang, R. Côté, E. Eyler, and P. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004). [CrossRef] [PubMed]
  6. K. Singer, M. Reetz-Lamour, T. Amthor, L. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett. 93, 163001 (2004). [CrossRef] [PubMed]
  7. T. Vogt, M. Viteau, J. M. Zhao, A. Choteau, D. Compared, and P. Pillet, “Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms,” Phys. Rev. Lett. 97, 083003 (2006). [CrossRef] [PubMed]
  8. T. F. Gallagher, Rydberg Atoms (Cambridge Univ. Press, 1994).
  9. W. Li, P. J. Tanner, and T. F. Gallagher, “Dipole–dipole excitation and ionization in an ultracold gas of Rydberg atoms,” Phys. Rev. Lett. 94, 173001 (2005). [CrossRef] [PubMed]
  10. P. J. Tanner, J. Han, E. S. Shuman, and T. F. Gallagher, “Many-body ionization in a frozen Rydberg gas,” Phys. Rev. Lett. 100, 043002 (2008). [CrossRef] [PubMed]
  11. T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, and M. Weidemüller, “Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas,” Phys. Rev. Lett. 98, 023004 (2007). [CrossRef] [PubMed]
  12. M. Viteau, A. Chotia, D. Comparat, D. A. Tate, T. F. Gallagher, and P. Pillet, “Melting a frozen Rydberg gas with an attractive potential,” Phys. Rev. A 78, 040704 (2008). [CrossRef]
  13. T. Amthor, M. Reetz-Lamour, S. Giese, and M. Weidemüller, “Modeling many-particle mechanical effects of an interacting Rydberg gas,” Phys. Rev. A 76, 054702 (2007). [CrossRef]
  14. T. Wang, S. F. Yelin, R. Côté, E. E. Eyler, S. M. Farooqi, P. L. Gould, M. Koštrun, D. Tong, and D. Vrinceanu, “Superradiance in ultracold Rydberg gases,” Phys. Rev. A 75, 033802 (2007). [CrossRef]
  15. J. O. Day, E. Brekke, and T. G. Walker, “Dynamics of low-density ultracold Rydberg gases,” Phys. Rev. A 77, 052712 (2008). [CrossRef]
  16. L. J. Zhang, Z. G. Feng, A. L. Li, J. M. Zhao, C. Y. Li, and S. T. Jia, “The experimental research of spontaneous evolution from ultracold Rydberg atoms to plasma,” Chin. Phys. Lett. 25, 1362–1364 (2008). [CrossRef]
  17. K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes,” J. Phys. B 38, S295–S307 (2005). [CrossRef]
  18. M. P. Robinson, B. Laburthe Tolra, and W. Michael, “Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000). [CrossRef] [PubMed]
  19. A. L. Oliveira, M. W. Mancini, V. S. Bagnato, and L. G. Marcassa, “Rydberg cold collisions dominated by ultralong range potential,” Phys. Rev. Lett. 90, 143002 (2003). [CrossRef] [PubMed]
  20. F. Robicheaux, “Ionization due to the interaction between two Rydberg atoms,” J. Phys. B 38, S333–S342 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited