OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11650–11656

Hybrid planar microresonators with organic and InGaAs active media

J. R. Mialichi, A. Camposeo, L. Persano, L. A. M. Barea, P. Del Carro, D. Pisignano, and N. C. Frateschi  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11650-11656 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The authors report on the fabrication of hybrid planar micro-resonators based on InGaAs microdisks with an evaporated organic material. Samples of InGaAs grown on InP(100) substrates are obtained by Chemical Beam Epitaxy, and microdisks of InGaAs with different diameters are fabricated by focused ion beam. The hybrid disks are obtained by the subsequent evaporation of 8-hydroxyquinoline aluminium doped with 4-Dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran on the InGaAs microdisks. The devices, characterized by micro- and confocal photoluminescence imaging and spectroscopy, exhibit emission around 650 nm, from the organic material for disks with different radius. Finally, simultaneous emission in the visible and at whispering gallery resonant modes in the 1350-1450 nm range are observed due to excitation transfer to InGaAs. These devices open the possibility to combine the flexibility of organics with the high gain of III-V compounds for wavelength down conversion and telecom applications.

© 2010 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(250.3680) Optoelectronics : Light-emitting polymers

ToC Category:
Integrated Optics

Original Manuscript: March 5, 2010
Revised Manuscript: May 7, 2010
Manuscript Accepted: May 12, 2010
Published: May 18, 2010

J. R. Mialichi, A. Camposeo, L. Persano, L. A. M. Barea, P. Del Carro, D. Pisignano, and N. C. Frateschi, "Hybrid planar microresonators with organic and InGaAs active media," Opt. Express 18, 11650-11656 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644–653 (1996). [CrossRef]
  2. J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008). [CrossRef]
  3. U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994). [CrossRef] [PubMed]
  4. Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993). [CrossRef]
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992). [CrossRef]
  6. L. Raleigh, “The Problem of the Whispering Gallery,” in Scientific Papers (Cambridge Univ. Press, 1912), Vol. 5, pp. 617–620. [PubMed]
  7. J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007). [CrossRef] [PubMed]
  8. F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996). [CrossRef]
  9. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004). [CrossRef]
  10. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000). [CrossRef]
  11. F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003). [CrossRef]
  12. E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008). [CrossRef] [PubMed]
  13. C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006). [CrossRef]
  14. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990). [CrossRef]
  15. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996). [CrossRef]
  16. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997). [CrossRef]
  17. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006). [CrossRef]
  18. S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000). [CrossRef]
  19. M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007). [CrossRef]
  20. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002). [CrossRef] [PubMed]
  21. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995). [CrossRef] [PubMed]
  22. S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998). [CrossRef]
  23. R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004). [CrossRef]
  24. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001). [CrossRef]
  25. S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998). [CrossRef]
  26. G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005). [CrossRef]
  27. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006). [CrossRef]
  28. D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999). [CrossRef]
  29. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008). [CrossRef]
  30. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010). [CrossRef] [PubMed]
  31. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009). [CrossRef] [PubMed]
  32. S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009). [CrossRef]
  33. A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited