OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11671–11682

Light-bullet routing and control with planar waveguide arrays

Matthew O. Williams, Colin W. McGrath, and J. Nathan Kutz  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11671-11682 (2010)
http://dx.doi.org/10.1364/OE.18.011671


View Full Text Article

Enhanced HTML    Acrobat PDF (762 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spatial mode-locking in three dimensions can be achieved in a slab waveguide array architecture. This study focuses on using the resulting robust and self-starting light bullet formation for photonics applications. Specifically, light bullets can be manipulated through a simple electronically addressable spatial gain dynamics. By applying gain ramps in time and/or space via electronics technology, complete control and manipulation of the light bullets can be achieved, thus allowing for the construction of the master logic gates of NAND and NOR. Its robustness, self-starting behavior and easy addressability suggest that the slab waveguide array mode-locking merits serious consideration as a next generation photonics device.

© 2010 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 22, 2010
Manuscript Accepted: April 23, 2010
Published: May 18, 2010

Citation
Matthew O. Williams, Colin W. McGrath, and J. Nathan Kutz, "Light-bullet routing and control with planar waveguide arrays," Opt. Express 18, 11671-11682 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, "Discrete spatial optical solitons in waveguide arrays," Phys. Rev. Lett. 81(3383-3386) (1998). [CrossRef]
  2. D. Christodoulides and R. I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides", Opt. Lett. 13, 794-796 (1988). [CrossRef] [PubMed]
  3. A. B. Aceves, C. D. Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, "Discrete self-trapping soliton interactions, and beam steering in nonlinear waveguide arrays," Phys. Rev. E 53, 1172-1189 (1996). [CrossRef]
  4. H. S. Eisenberg, R. Morandotti, Y. Silberberg, J. M. Arnold, G. Pennelli, and J. S. Aitchison, "Optical discrete solitons in waveguide arrays. 1. Soliton formation," J. Opt. Soc. Am. B 19, 2938-2944 (2002). [CrossRef]
  5. U. Peschel, R. Morandotti, J.M. Arnold, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg, T. Pertsch, and F. Lederer, "Optical discrete solitons in waveguide arrays. 2. Dynamics properties," J. Opt. Soc. Am. B 19, 2637-2644 (2002). [CrossRef]
  6. J. N. Kutz, Mode-Locking of Fiber Lasers via Nonlinear Mode-Coupling, vol. 661 of Lecture Notes in Physics (Springer Berlin / Heidelberg, 2005).
  7. J. Proctor and J. N. Kutz, "Theory and Simulation of Passive Mode-locking with Waveguide Arrays," Opt. Lett. 13, 2013-1015 (2005). [CrossRef]
  8. J. N. Kutz and B. Sandstede, "Theory of passive harmonic mode-locking using waveguide arrays", Opt. Express 16, 636-650 (2008). [CrossRef] [PubMed]
  9. B. Bale, J. Kutz, and B. Sandstede, "OptimizingWaveguide Array Mode-Locking for High-Power Fiber Lasers," IEEE J. Sel. Top. Quantum 15(1), 220-231 (2009). [CrossRef]
  10. Y. Silberberg, "Collapse of optical pulses," Opt. Lett. 15, 1282-1284 (1990). [CrossRef] [PubMed]
  11. F. Wise and P. Di Trapani, "The Hunt for Light Bullets Spatiotemporal Solitons," Opt. Photon. News (2), 28-32 (2002) [CrossRef]
  12. 12. See the Fundamentals, Functionalities, and Applications of Cavity Solitons (FunFACS) webpage for a complete overview of current and potential methods and realizations of generating localized optical structures: www.funfacs.org.
  13. M. O. Williams and J. N. Kutz, "Spatial Mode-Locking of Light Bullets in Planar Waveguide Arrays," Opt. Express 17(20), 18,320-18,329 (2009). [CrossRef]
  14. P. Y. P. Chen, B. A. Malomed, and P. L. Chu, "Trapping Bragg solitons by a pair of defects," Phys. Rev. E 71, 066,601 (2005). [CrossRef]
  15. S. Chi, B. Luo, and H.-Y. Tseng, "Ultrashort bragg soliton in a fiber bragg grating," Opt. Commun. 206(1-3), 115- 121 (2002). [CrossRef]
  16. J. T. Mok, C. M. de Sterke, I. C. M. Liter, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nat. Physics 2, 775-780 (2006). [CrossRef]
  17. A. A. Sukhorukov and Y. S. Kivshar, "Slow Light Bullets in Arrays of Nonlinear Bragg-Grating Waveguides," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, p. JWB82 (Optical Society of America, 2006). [PubMed]
  18. R. H. Enns and S. S. Rangnekar, "Bistable spheroidal optical solitons," Phys. Rev. A 45(5), 3354-3357 (1992). [CrossRef] [PubMed]
  19. A. B. Blagoeva, S. G. Dinev, A. A. Dreischuh, and A. Naidenov, "Light bullets formation in a bulk media," IEEE J. Quantum Electron. 27(8), 2060-2065 (1991). [CrossRef]
  20. Y. V. Kartashov, L. Torner, and D. N. Christodoulides, "Soliton dragging by dynamic optical lattices," Opt. Lett. 30(11), 1378-1380 (2005). [CrossRef] [PubMed]
  21. W. Krolikowski, U. Trutschel, M. Cronin-Golomb, and C. Schmidt-Hattenberger, "Solitonlike optical switching in a circular fiber array," Opt. Lett. 19(5), 320-322 (1994). [CrossRef] [PubMed]
  22. J. Meier, G. I. Stegeman, D. N. Christodoulides, Y. Silberberg, R. Morandotti, H. Yang, G. Salamo,M. Sorel, and J. S. Aitchison, "Beam interactions with a blocker soliton in one-dimensional arrays," Opt. Lett. 30(9), 1027-1029 (2005). [CrossRef] [PubMed]
  23. Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jager, "Realization of a Semiconductor-Based Cavity Soliton Laser," Phys. Rev. Lett. 100, 013907 (2008). [CrossRef] [PubMed]
  24. S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller and R. Jager, "Cavity solitons as pixels in semiconductor microcavities," Nature 419, 699-702 (2002). [CrossRef] [PubMed]
  25. V. B. Taranenko and C. O. Weiss, "Incoherent optical switching of semiconductor resonator solitons", Appl. Phys. B 72, 893-895 (2001).
  26. S. Barbay, Y. M’enesguen, X. Hachair, L. Lery, I. Sagnes and R. Kuszelewics, "Incoherent and coherent writing and erasure of cavity solitons in an optically pumped semiconductor amplifier", Opt. Lett. 31, 1504-1506 (2006). [CrossRef] [PubMed]
  27. X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle and J. Tredicce, "Cavity-solitons switching in semiconductor microcavities," Phys. Rev. A 72, 013815 (2005). [CrossRef]
  28. M. O. Williams, M. Feng, J. N. Kutz, K. Silverman, R. Mirin and S. Cundiff, "Intensity Dynamics in Semiconductor Laser Arrays", OSA Nonlinear Optics 2009 Technical Digest JTuB14 (2009).
  29. L. Rahman and H. Winful, "Nonlinear dynamics of semiconductor laser arrays: a mean field model," IEEE J. Quantum Electron. 30(6), 1405-1416 (1994). [CrossRef]
  30. J. N. Kutz and B. Sandstede, "Theory of passive harmonicmode-locking using waveguide arrays," Opt. Express 16(2), 636-650 (2008). [CrossRef] [PubMed]
  31. E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and X. Wang, "AUTO 97: Continuation And Bifurcation Software For Ordinary Differential Equations (with HomCont),".
  32. L. N. Trefethen, Spectral methods in MATLAB (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (941 KB)     
» Media 2: MOV (1568 KB)     
» Media 3: MOV (1301 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited