OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11700–11706

Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber

N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11700-11706 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated spectral compression of ultrashort soliton pulses in a wide wavelength region based on an adiabatic soliton spectral compression technique using a comb-profile fiber. The comb-profile fiber was carefully designed using numerical analysis and fabricated using a conventional single-mode fiber and a dispersion-shifted fiber. The spectral width of a 200 fs soliton pulse was compressed from 12 to 15 nm to 0.54–0.71 nm in the wavelength region 1620–1850 nm, giving a spectral compression factor of up to 19.8–25.9. Owing to the soliton effect, the side lobe level was suppressed to –19.2 to –9.7 dB.

© 2010 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

Original Manuscript: April 2, 2010
Revised Manuscript: May 15, 2010
Manuscript Accepted: May 15, 2010
Published: May 18, 2010

N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh, "Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber," Opt. Express 18, 11700-11706 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003). [CrossRef] [PubMed]
  2. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005). [CrossRef] [PubMed]
  3. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  4. N. Nishizawa and T. Goto, “Compact system of wavelength tunable femtosecond soliton pulse generation system,” IEEE Photon. Technol. Lett. 11, 325 (1999). [CrossRef]
  5. N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009). [CrossRef]
  6. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008). [CrossRef]
  7. T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13(1), 13–15 (2001). [CrossRef]
  8. K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett. 33(24), 2892–2894 (2008). [CrossRef] [PubMed]
  9. M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993). [CrossRef]
  10. B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25(7), 445–447 (2000). [CrossRef]
  11. J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002). [CrossRef]
  12. E. R. Andresen, J. Thøgersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30(15), 2025–2027 (2005). [CrossRef] [PubMed]
  13. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19(8), 539–541 (1994). [CrossRef] [PubMed]
  14. K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  16. B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (421 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited