OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11707–11712

Low-loss compact high-Q 3D THz grating resonator based on a hybrid silicon metallic slit waveguide

Marko Gerhard, Christian Imhof, and Remigius Zengerle  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11707-11712 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a high-Q 3D waveguide transmission filter for the THz-domain, based on an inhomogeneous Bragg grating, incorporated into the walls of a metallic slit waveguide. The reasons for the occurring loss mechanisms in the compact component are presented and the losses are minimized by selective mode adaption and by tapering the transitions to the corrugated regions. The performance of the device and the influence of parameter variations are analyzed by detailed numerical simulations. These 3D simulations clearly show the drastic drawback of 2D calculations in designing narrowband 3D metal-dielectric waveguide filters and could even lead to a better performance than known designs in 2D technology.

© 2010 OSA

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(130.5296) Integrated optics : Photonic crystal waveguides
(050.6624) Diffraction and gratings : Subwavelength structures
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: April 1, 2010
Revised Manuscript: May 8, 2010
Manuscript Accepted: May 10, 2010
Published: May 18, 2010

Marko Gerhard, Christian Imhof, and Remigius Zengerle, "Low-loss compact high-Q 3D THz grating resonator based on a hybrid silicon metallic slit waveguide," Opt. Express 18, 11707-11712 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Haus and C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12(9), 532–539 (1976). [CrossRef]
  2. S. Fan, J. D. Joannopoulos, J. N. Winn, A. Devenyi, J. C. Chen, and R. D. Meade, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12(7), 1267–1272 (1995). [CrossRef]
  3. R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995). [CrossRef]
  4. M. Palamaru and Ph. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466–1468 (2001). [CrossRef]
  5. D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002). [CrossRef]
  6. Ph. Lalanne, S. Mias, and J. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12(3), 458–467 (2004). [CrossRef] [PubMed]
  7. Q. Chen, M. Archbold, and D. Allsopp, “Design of ultrahigh-Q 1-D photonic crystal microcavities,” IEEE J. Quantum Electron. 45(3), 233–239 (2009). [CrossRef]
  8. A. Boltasseva, S. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24(2), 912–918 (2006). [CrossRef]
  9. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007). [CrossRef]
  10. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  11. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007). [CrossRef]
  12. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S 601–S618, 618 (2006). [CrossRef]
  13. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009). [CrossRef]
  14. A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett. 33(4), 348–350 (2008). [CrossRef] [PubMed]
  15. C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009). [CrossRef]
  16. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007). [CrossRef]
  17. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007). [CrossRef]
  18. R. Mendis, “Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides,” Opt. Lett. 31(17), 2643–2645 (2006). [CrossRef] [PubMed]
  19. CST Microwave Studio (Computer Simulation Technology AG)
  20. M. Ordal, L. Long, R. J. Bell, S. Bell, R. R. Bell, R. Alexander, and C. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983). [CrossRef] [PubMed]
  21. J. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17(12), 1997–2034 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited