OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11720–11727

Self-mixing flow sensor using a monolithic VCSEL array with parallel readout

Yah Leng Lim, Russell Kliese, Karl Bertling, Katsuyoshi Tanimizu, P. A. Jacobs, and Aleksandar D. Rakić  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11720-11727 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1099 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The self-mixing sensing technique is a compact, interferometric sensing technique that can be used for measuring fluid flows. In this work, we demonstrate a parallel readout self-mixing flow velocity sensing system based on a monolithic Vertical-Cavity Surface-Emitting Laser (VCSEL) array. The parallel sensing scheme enables high-resolution full-field imaging systems employing electronic scanning with faster acquisition rates than mechanical scanning systems. The self-mixing signal is acquired from the variation in VCSEL junction voltage, thus markedly reducing the system complexity. The system was validated by measuring velocity distribution of fluid in a custom built diverging-converging planar flow channel. The results obtained agree well with simulation and demonstrate the feasibility of high frame-rate and resolution parallel self-mixing sensors.

© 2010 Optical Society of America

OCIS Codes
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(280.3420) Remote sensing and sensors : Laser sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: April 9, 2010
Revised Manuscript: April 30, 2010
Manuscript Accepted: May 13, 2010
Published: May 18, 2010

Yah Leng Lim, Russell Kliese, Karl Bertling, Katsuyoshi Tanimizu, P. A. Jacobs, and Aleksandar D. Rakic, "Self-mixing flow sensor using a monolithic VCSEL array with parallel readout," Opt. Express 18, 11720-11727 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16(3), 347-355 (1980). [CrossRef]
  2. Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, "Voltage change across the self-coupled semiconductor laser," IEEE J. Quantum Electron. 17(7), 1216-1225 (1981). [CrossRef]
  3. Y. L. Lim, K. Bertling, P. Rio, J. Tucker, and A. Rakic, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," Proc SPIE 6038, 60381 - (Brisbane, Australia, 2006).
  4. F. Gouaux, N. Servagent, and T. Bosch, "Absolute distance measurement with an optical feedback interferometer," Appl. Opt. 37(28), 6684-6689 (1998). [CrossRef]
  5. S. Donati, M. Norgia, and G. Giuliani, "Self-mixing differential vibrometer based on electronic channel subtraction," Appl. Opt. 45(28), 7264-7268 (2006). [CrossRef] [PubMed]
  6. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt. 25(9), 1417-1419 (1986). [CrossRef] [PubMed]
  7. F. de Mul, M. Koelink, A. Weijers, J. Greve, J. Aarnoudse, R. Graaff, and A. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31(27), 5844-5851 (1992). [CrossRef]
  8. C. Zakian and M. Dickinson, "Laser Doppler imaging through tissues phantoms by using self-mixing interferometry with a laser diode," Opt. Lett. 32(19), 2798-2800 (2007). [CrossRef] [PubMed]
  9. J. R. Tucker, J. L. Baque, Y. L. Lim, A. V. Zvyagin, and A. D. Rakic, "Parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers," Appl. Opt. 46(25), 6237-6246 (2007). [CrossRef] [PubMed]
  10. Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, "Self-mixing imaging sensor using a monolithic VCSEL array with parallelreadout," Opt. Express 17(7), 5517-5525 (2009). [CrossRef] [PubMed]
  11. K. Goossen, J. Cunningham, and A. Krishnamoorthy, "1 × 12 VCSEL array with optical monitoring via flip-chip bonding," IEEE Photon. Technol. Lett. 18(11), 1219-1221 (2006). [CrossRef]
  12. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, Berlin, 2003).
  13. C. Zakian, M. Dickinson, and T. King, "Dynamic light scattering by using self-mixing interferometry with a laser diode," Appl. Opt. 45(10), 2240-2245 (2006). [CrossRef] [PubMed]
  14. Elmo Motion Control, "SimplIQ Digital Servo Drives: Whistle," (2010), URL http://www.elmomc.com/ products/whistle-digital-servo-drive-main.htm.
  15. M. Post, R. Richter, R. Keeler, R. Hardesty, T. Lawrence, and F. Hall, "Calibration of Coherent LIDAR Targets," Appl. Opt. 19(16), 2828-2832 (1980). [CrossRef] [PubMed]
  16. D. K. Serkland, K. M. Geib, G. M. Peake, R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, and M. Prouty, "VCSELs for atomic sensors," Proc. SPIE 6484, 648406 (2007). [CrossRef]
  17. X. Raoul, T. Bosch, G. Plantier, and N. Servagent, "A double-laser diode onboard sensor for velocity measurements," IEEE Trans. Instrum. Meas. 53(1), 95-101 (2004). [CrossRef]
  18. V. V. Tuchin, Tissue optics : light scattering methods and instruments for medical diagnosis, 2nd ed. (SPIE Press, Bellingham, Washington, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (3997 KB)     
» Media 2: MOV (3190 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited