OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11754–11762

A versatile diffractive maskless lithography for single-shot and serial microfabrication

Nathan J. Jenness, Ryan T. Hill, Angus Hucknall, Ashutosh Chilkoti, and Robert L. Clark  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11754-11762 (2010)
http://dx.doi.org/10.1364/OE.18.011754


View Full Text Article

Enhanced HTML    Acrobat PDF (1537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a diffractive maskless lithographic system that is capable of rapidly performing both serial and single-shot micropatterning. Utilizing the diffractive properties of phase holograms displayed on a spatial light modulator, arbitrary intensity distributions were produced to form two and three dimensional micropatterns/structures in a variety of substrates. A straightforward graphical user interface was implemented to allow users to load templates and change patterning modes within the span of a few minutes. A minimum resolution of ~700 nm is demonstrated for both patterning modes, which compares favorably to the 232 nm resolution limit predicted by the Rayleigh criterion. The presented method is rapid and adaptable, allowing for the parallel fabrication of microstructures in photoresist as well as the fabrication of protein microstructures that retain functional activity.

© 2010 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(230.6120) Optical devices : Spatial light modulators
(350.3450) Other areas of optics : Laser-induced chemistry
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: March 2, 2010
Revised Manuscript: April 30, 2010
Manuscript Accepted: April 30, 2010
Published: May 19, 2010

Citation
Nathan J. Jenness, Ryan T. Hill, Angus Hucknall, Ashutosh Chilkoti, and Robert L. Clark, "A versatile diffractive maskless lithography for single-shot and serial microfabrication," Opt. Express 18, 11754-11762 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11754


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008). [CrossRef] [PubMed]
  2. S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009). [CrossRef] [PubMed]
  3. T. Nisisako and T. Torii, “Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles,” Adv. Mater. 19(11), 1489–1493 (2007). [CrossRef]
  4. A. Jayagopal, G. P. Stone, and F. R. Haselton, “Light-guided surface engineering for biomedical applications,” Bioconjug. Chem. 19(3), 792–796 (2008). [CrossRef] [PubMed]
  5. F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007). [CrossRef] [PubMed]
  6. M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009). [CrossRef]
  7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000). [CrossRef] [PubMed]
  8. S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006). [CrossRef] [PubMed]
  9. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007). [CrossRef]
  10. K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27(15), 3005–3009 (2006). [CrossRef] [PubMed]
  11. T. Naiser, T. Mai, W. Michael, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006). [CrossRef]
  12. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008). [CrossRef] [PubMed]
  13. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006). [CrossRef] [PubMed]
  14. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12(9), 1908–1915 (2004). [CrossRef] [PubMed]
  15. D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003). [CrossRef]
  16. J. Amako, H. Miura, and T. Sonehara, “Speckle-Noise Reduction on Kinoform Reconstruction Using a Phase-Only Spatial Light-Modulator,” Appl. Opt. 34(17), 3165–3171 (1995). [CrossRef] [PubMed]
  17. D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006). [CrossRef] [PubMed]
  18. J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17(19), 6005–6012 (2001). [CrossRef]
  19. D. W. Palmer and S. K. Decker, “Microscopic Circuit Fabrication on Refractory Superconducting Films,” Rev. Sci. Instrum. 44(11), 1621–1624 (1973). [CrossRef]
  20. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–248 (1972).
  21. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006). [CrossRef] [PubMed]
  22. R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009). [CrossRef]
  23. F. L. Yap and Y. Zhang, “Protein and cell micropatterning and its integration with micro/nanoparticles assembly,” Biosens. Bioelectron. 22(6), 775–788 (2007). [CrossRef]
  24. S. Basu and P. J. Campagnola, “Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation,” J. Biomed. Mater. Res. 71A(2), 359–368 (2004). [CrossRef]
  25. R. P. Ekins, “Ligand assays: from electrophoresis to miniaturized microarrays,” Clin. Chem. 44(9), 2015–2030 (1998). [PubMed]
  26. M. A. Holden and P. S. Cremer, “Light activated patterning of dye-labeled molecules on surfaces,” J. Am. Chem. Soc. 125(27), 8074–8075 (2003). [CrossRef] [PubMed]
  27. B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (7451 KB)      QuickTime
» Media 2: MOV (2190 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited