OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11785–11790

Particle tracking stereomicroscopy in optical tweezers: Control of trap shape

Richard Bowman, Graham Gibson, and Miles Padgett  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11785-11790 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an optical system capable of generating stereoscopic images to track trapped particles in three dimensions. Two-dimensional particle tracking on each image yields three dimensional position information. Our approach allows the use of a high numerical aperture (NA= 1.3) objective and large separation angle, such that particles can be tracked axially with resolution of 3nm at 340Hz. Spatial Light Modulators (SLMs), the diffractive elements used to steer and split laser beams in Holographic Optical Tweezers, are also capable of more general operations. We use one here to vary the ratio of lateral to axial trap stiffness by changing the shape of the beam at the back aperture of the microscope objective. Beams which concentrate their optical power at the extremes of the back aperture give rise to much more efficient axial trapping. The flexibility of using an SLM allows us to create multiple traps with different shapes.

© 2010 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.7010) Lasers and laser optics : Laser trapping
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: March 9, 2010
Revised Manuscript: May 11, 2010
Manuscript Accepted: May 17, 2010
Published: May 19, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Richard Bowman, Graham Gibson, and Miles Padgett, "Particle tracking stereomicroscopy in optical tweezers: Control of trap shape," Opt. Express 18, 11785-11790 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999). [CrossRef]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]
  4. P. Rodrigo, V. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005). [CrossRef]
  5. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475–5480 (2004). [CrossRef] [PubMed]
  6. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897–903 (2006). [CrossRef] [PubMed]
  7. I. Perch-Nielsen, P. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 13, 2852–2857 (2005). [CrossRef] [PubMed]
  8. K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993). [CrossRef] [PubMed]
  9. O. Otto, C. Gutsche, F. Kremer, and U. F. Keyser, “Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis,” Rev. Sci. Instrum. 79, 023710 (2008). [CrossRef] [PubMed]
  10. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008). [CrossRef] [PubMed]
  11. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  12. A. T. O’Neil, and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193, 45–50 (2001). [CrossRef]
  13. M. Speidel, L. Friedrich, and A. Rohrbach, “Interferometric 3D tracking of several particles in a scanning laser focus,” Opt. Express 17, 1003–1015 (2009). [CrossRef] [PubMed]
  14. A. Rohrbach, C. Tischer, D. Neumayer, E. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004). [CrossRef]
  15. S. J. Lee, and S. Kim, “Advanced particle-based velocimetry techniques for microscale flows,” Microfluid. Nanofluid. 6, 577–588 (2009). [CrossRef]
  16. J. C. Crocker, and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  17. Z. Zhang, and C.-H. Menq, “Three-dimensional particle tracking with subnanometer resolution using off-focus images,” Appl. Opt. 47, 2361–2370 (2008). [CrossRef] [PubMed]
  18. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009). [CrossRef] [PubMed]
  19. J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation,” Opt. Express 16, 7244–7250 (2008). [CrossRef] [PubMed]
  20. J. S. Dam, I. Perch-Nielsen, D. Palima, and J. Glückstad, “Multi-particle three-dimensional coordinate estimation in real-time optical manipulation,” J. Europ. Opt. Soc. Rap. Public. 4, 09045 (2009). [CrossRef]
  21. S. R. P. Pavani, and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16, 22048–22057 (2008). [CrossRef] [PubMed]
  22. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009). [CrossRef]
  23. C. Pacoret, R. Bowman, G. Gibson, S. Haliyo, D. Carberry, A. Bergander, S. Regnier, and M. Padgett, “Touching the microworld with force-feedback optical tweezers,” Opt. Express 17, 10259–10264 (2009). [CrossRef] [PubMed]
  24. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009). [CrossRef]
  25. W. Singer, S. Bernet, N. Hecker, and M. Ritsch-Marte, “Three-dimensional force calibration of optical tweezers,” J. Mod. Opt. 47, 2921–2931 (2000).
  26. J. Leach, M. R. Dennis, J. Courtial, and M. Padgett, “Vortex knots in light,” N. J. Phys. 7, 55 (2005). [CrossRef]
  27. L. Ikin, D. M. Carberry, G. Gibson, M. Padgett, and M. J. Miles, “Assembly and force measurement with SPMlike probes in holographic optical tweezers,” N. J. Phys. 11, 023012 (2009). [CrossRef]
  28. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. Perch-Nielsen, and J. Glückstad, “Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps,” Opt. Express 13, 6899–6904 (2005). [CrossRef] [PubMed]
  29. T. Cizmar, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008). [CrossRef] [PubMed]
  30. E. McLeod, and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008). [CrossRef] [PubMed]
  31. P. Galajda, and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001). [CrossRef]
  32. T. Asavei, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins,” J. Opt. A 11, 034001 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited