OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11791–11799

Silicon-based plasmonic waveguides

Alexey V. Krasavin and Anatoly V. Zayats  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11791-11799 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1115 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and comprehensively investigate Si-based plasmonic waveguides as a means to confine and manipulate photonic signals. The high refractive index of Si assures strong confinement and a very high level of photonic integration with achievable waveguide separations of the order of 10 nm and waveguide bends with 500 nm radius at telecommunication wavelengths, while using Al and Cu plasmonic material platforms, makes such waveguides fully compatible with existing CMOS fabrication processes. Their potential future in hybrid electronic/photonic chips is further reinforced as various configurations have been shown to compensate SPP propagation loss. The group velocity dispersion of such waveguides allows over 10 Tb/s signal transfer rates. The figures of merit allowing comparison of passive and active functionalities achievable with various waveguides have also been introduced.

© 2010 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: March 18, 2010
Revised Manuscript: April 23, 2010
Manuscript Accepted: May 5, 2010
Published: May 19, 2010

Alexey V. Krasavin and Anatoly V. Zayats, "Silicon-based plasmonic waveguides," Opt. Express 18, 11791-11799 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lipson, “Guiding, modulating, and emitting light on silicon - challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  2. S. I. Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford Publ., 2008).
  3. J.-M. Lee, S. Park, M.-S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-228 . [CrossRef] [PubMed]
  4. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009). [CrossRef]
  5. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  7. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007). [CrossRef]
  8. S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” J. Sel. Top. Quantum Electron. 12(6), 1214–1220 (2006). [CrossRef]
  9. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7460 . [CrossRef] [PubMed]
  10. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008). [CrossRef]
  11. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009). [CrossRef]
  12. Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009). [CrossRef] [PubMed]
  13. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  14. D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett. 95(17), 171112 (2009). [CrossRef]
  15. A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283(8), 1581–1584 (2010). [CrossRef]
  16. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic press, New York, 1984).
  17. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12174 . [CrossRef] [PubMed]
  18. I. De Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78(16), 161401 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited