OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11810–11820

Subwavelength broadband splitters and switches for femtosecond plasmonic signals

Andreas A. Reiserer, Jer-Shing Huang, Bert Hecht, and Tobias Brixner  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11810-11820 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Numerical simulations and an analytic approach based on transmission line theory are used to design splitters for nano-plasmonic signal processing that allow to arbitrarily adjust the ratio of transmission from an input into two different output arms. By adjusting the geometrical parameters of the structure, either a high bandwidth or a sharp transmission resonance is obtained. Switching between the two arms can be achieved by modulating the effective refractive index of the waveguide. Employing the instantaneous Kerr effect, switching rates in the THz regime are potentially feasible. The suggested devices are of interest for future applications in nanoplasmonic information processing.

© 2010 Optical Society of America

OCIS Codes
(200.4560) Optics in computing : Optical data processing
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons
(130.4815) Integrated optics : Optical switching devices
(250.5403) Optoelectronics : Plasmonics
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:
Integrated Optics

Original Manuscript: March 26, 2010
Revised Manuscript: May 10, 2010
Manuscript Accepted: May 16, 2010
Published: May 19, 2010

Andreas A. Reiserer, Jer-Shing Huang, Bert Hecht, and Tobias Brixner, "Subwavelength broadband splitters and switches for femtosecond plasmonic signals," Opt. Express 18, 11810-11820 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  3. E. Moreno, S. G. Rodrigo, S. L. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett. 100, 023901 (2008). [CrossRef] [PubMed]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  6. M. Sukharev, and T. Seideman, “Coherent control of light propagation via nanoparticle arrays,” J. Phys. B 40, 283–298 (2007). [CrossRef]
  7. P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. García de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009). [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008). [CrossRef] [PubMed]
  9. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit,” Nano Lett. 9, 1897–1902 (2009). [CrossRef] [PubMed]
  10. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides,” Nano Lett. 8, 2925–2929 (2008). [CrossRef] [PubMed]
  11. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009). [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  13. D. J. Bergman, and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  14. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008). [CrossRef] [PubMed]
  15. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008). [CrossRef] [PubMed]
  16. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009). [CrossRef]
  17. G. Veronis, and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  18. A. V. Krasavin, and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007). [CrossRef]
  19. Z. Han, and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278, 199–203 (2007). [CrossRef]
  20. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16, 14369–14379 (2008). [CrossRef] [PubMed]
  21. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008). [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef] [PubMed]
  23. Z. Kang, and G. P. Wang, “Coupled metal gap waveguides as plasmonic wavelength sorters,” Opt. Express 16, 7680–7685 (2008). [CrossRef] [PubMed]
  24. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897–902 (2009). [CrossRef] [PubMed]
  25. C. Min, and G. Veronis, “Absorption switches in metal–dielectric–metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009). [CrossRef] [PubMed]
  26. W. Cai, J. S. White, and M. L. Brongersma, “Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators,” Nano Lett. 9, 4403–4411 (2009). [CrossRef] [PubMed]
  27. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent Control of Femtosecond Energy Localization in Nanosystems,” Phys. Rev. Lett. 88, 067402 (2002). [CrossRef] [PubMed]
  28. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007). [CrossRef] [PubMed]
  29. J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009). [CrossRef]
  30. W. H. A. Schilders, P. G. Ciarlet, J. Lions, and E. J. W. T. Maten, Numerical Methods in Electromagnetics (Elsevier, 2005).
  31. U. Inan, and A. Inan, Engineering electromagnetics (Addison-Wesley, 1999).
  32. Lumerical FDTD solutions, version 6; www.lumerical.com
  33. E. D. Palik, and G. Ghosh, Handbook of optical constants of solids (Academic Press, 1985).
  34. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009). [CrossRef]
  35. R. Trebino, Frequency-resolved optical gating: The measurement of ultrashort laser pulses (Kluwer Academic Publishers, 2000).
  36. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000). [CrossRef]
  37. J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias, “Damage threshold dependence on electron-phonon coupling in Au and Ni films,” Appl. Surf. Sci. 127–129, 40–45 (1998). [CrossRef]
  38. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited