OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11838–11845

Experimental study of the relation between the degrees of coherence in space-time and space-frequency domain

Bhaskar Kanseri and Hem Chandra Kandpal  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11838-11845 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (876 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental study showing the effect of the change in the bandwidth of light on the magnitude of both the complex degree of coherence and the spectral degree of coherence at a pair of points in the cross-section of a beam. A variable bandwidth source with a Young’s interferometer is utilized to produce the interference fringes. We also report for the first time that if the field is quasi-monochromatic or sufficiently narrowband, the elements of both the beam coherence polarization matrix and the cross-spectral density matrix, normalized to intensities (spectral densities) at the two points possess identical values.

© 2010 OSA

ToC Category:
Coherence and Statistical Optics

Original Manuscript: January 20, 2010
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 29, 2010
Published: May 20, 2010

Bhaskar Kanseri and Hem Chandra Kandpal, "Experimental study of the relation between the degrees of coherence in space-time and space-frequency domain," Opt. Express 18, 11838-11845 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37(2), 231–287 (1965). [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge: Cambridge University Press, 1999), chapter 10.
  3. L. Mandel and E. Wolf, “Spectral coherence and the concept of cross-spectral purity,” J. Opt. Soc. Am. 66(6), 529–535 (1976). [CrossRef]
  4. E. Wolf, “New theory of partial coherence in the space frequency domain. Part I: Spectra and cross spectra of steady state sources,” J. Opt. Soc. Am. 72(3), 343–351 (1982). [CrossRef]
  5. E. Wolf, “New theory of partial coherence in the space frequency domain. Part II: Steady-state fields and higher-order correlations,” J. Opt. Soc. Am. A 3(1), 76–85 (1986). [CrossRef]
  6. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press, 1995), chapters 4 and 7.
  7. E. Wolf, “Young’s interference fringes with narrow-band light,” Opt. Lett. 8(5), 250–252 (1983). [CrossRef] [PubMed]
  8. A. T. Friberg and E. Wolf, “Relationships between the complex degrees of coherence in the space-time and in the space-frequency domains,” Opt. Lett. 20(6), 623–625 (1995). [CrossRef] [PubMed]
  9. D. F. V. James and E. Wolf, “Some new aspects of Young’s interference experiment,” Phys. Lett. A 157(1), 6–10 (1991). [CrossRef]
  10. L. Basano, P. Ottonello, G. Rottigni, and M. Vicari, “Spatial and temporal coherence of filtered thermal light,” Appl. Opt. 42(31), 6239–6244 (2003). [CrossRef] [PubMed]
  11. B. Kanseri and H. C. Kandpal, “Experimental observation of invariance of spectral degree of coherence with change in bandwidth of light,” Opt. Lett. 35(1), 70–72 (2010). [CrossRef] [PubMed]
  12. E. Wolf, Introduction to Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press, 2007), chapters 3 and 4.
  13. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002). [CrossRef]
  14. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23(4), 241–243 (1998). [CrossRef]
  15. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” J. Opt. A: Pure App. Opt. 7(5), 941–951 (1998). [CrossRef]
  16. B. Kanseri, S. Rath, and H. C. Kandpal, “Determination of the beam coherence polarization matrix of a random electromagnetic beam,” IEEE J. Quantum Electron. 45(9), 1163–1167 (2009). [CrossRef]
  17. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5-6), 263–267 (2003). [CrossRef]
  18. H. Roychowdhury and E. Wolf, “Determination of the electric cross-spectral density matrix of a random electromagnetic beam,” Opt. Commun. 226(1-6), 57–60 (2003). [CrossRef]
  19. B. Kanseri, S. Rath, and H. C. Kandpal, “Determination of the amplitude and the phase of the elements of electric cross-spectral density matrix by spectral measurements,” Opt. Commun. 282(15), 3059–3062 (2009). [CrossRef]
  20. B. Kanseri and H. C. Kandpal, “Experimental determination of electric cross-spectral density matrix and generalized Stokes parameters for a laser beam,” Opt. Lett. 33(20), 2410 (2008). [CrossRef] [PubMed]
  21. G. P. Agrawal and E. Wolf, “propagation-induced polarization changes in partially coherent optical beams,” J. Opt. Soc. Am. A 17(11), 2019–2023 (2000). [CrossRef]
  22. F. Gori, M. Santarsiero, R. Borghi, and G. Piquero, “Use of the van Cittert-Zernike theorem for partially polarized sources,” Opt. Lett. 25(17), 1291–1293 (2000). [CrossRef]
  23. E. Wolf, “Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation,” Opt. Lett. 28(13), 1078–1080 (2003). [CrossRef] [PubMed]
  24. O. Korotkova, M. Salem, and E. Wolf, “The far zone behaviour of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 233(4-6), 225–230 (2004). [CrossRef]
  25. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space–frequency domain,” J. Opt. Soc. Am. A 21(11), 2205 (2004). [CrossRef]
  26. O. Korotkova and E. Wolf, “Spectral degree of coherence of a random three-dimensional electromagnetic field,” J. Opt. Soc. Am. A 21(12), 2382–2385 (2004). [CrossRef]
  27. J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29(6), 536–538 (2004). [CrossRef] [PubMed]
  28. P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13(16), 6051–6060 (2005). [CrossRef] [PubMed]
  29. H. T. Eyyuboğlu, Y. Baykal, and Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric turbulence,” J. Opt. Soc. Am. A 24(9), 2891 (2007). [CrossRef]
  30. Y. Cai, O. Korotkova, H. T. Eyyuboğlu, and Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16(20), 15834–15846 (2008). [CrossRef] [PubMed]
  31. M. Salem and E. Wolf, “Coherence-induced polarization changes in light beams,” Opt. Lett. 33(11), 1180–1182 (2008). [CrossRef] [PubMed]
  32. P. Réfrégier and A. Roueff, “Coherence polarization filtering and relation with intrinsic degrees of coherence,” Opt. Lett. 31(9), 1175–1177 (2006). [CrossRef] [PubMed]
  33. M. Salem and G. P. Agrawal, “Effects of coherence and polarization on the coupling of stochastic electromagnetic beams into optical fibers,” J. Opt. Soc. Am. A 26(11), 2452–2458 (2009). [CrossRef]
  34. S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beams,” J. Opt. A, Pure Appl. Opt. 10(5), 055001 (2008). [CrossRef]
  35. E. Fortin, “Direct demonstration of the Fresnel-Arago laws,” Am. J. Phys. 38(7), 917–918 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited