OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11877–11890

Optical coherence tomography axial resolution improvement by step-frequency encoding

Evgenia Bousi, Ismini Charalambous, and Costas Pitris  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11877-11890 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4920 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel technique for axial resolution improvement of Optical Coherence Tomography (OCT) systems is proposed. The technique is based on step-frequency encoding, using frequency shifting, of the OCT signal. A resolution improvement by a factor of ~7 is achieved without the need for a broader bandwidth light source. This method exploits a combination of two basic principles: the appearance of beating, when adding two signals of slightly different carrier frequencies, and the resolution improvement by deconvolution of the interferogram with an encoded autocorrelation function. In time domain OCT, step-frequency encoding can be implemented by performing two scans, with different carrier frequencies, and subsequently adding them to create the encoded signal. When the frequency steps are properly selected, deconvolution of the resulting interferogram, using appropriate kernels, results in a narrower resolution width.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Imaging Systems

Original Manuscript: March 31, 2010
Revised Manuscript: May 10, 2010
Manuscript Accepted: May 18, 2010
Published: May 20, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Evgenia Bousi, Ismini Charalambous, and Costas Pitris, "Optical coherence tomography axial resolution improvement by step-frequency encoding," Opt. Express 18, 11877-11890 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000). [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999). [CrossRef]
  3. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002). [CrossRef]
  4. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004). [CrossRef] [PubMed]
  5. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004). [CrossRef] [PubMed]
  6. A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28(14), 1230–1232 (2003). [CrossRef] [PubMed]
  7. A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49(7), 1235–1246 (2004). [CrossRef] [PubMed]
  8. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-microm axial resolution optical coherence tomography in the 1300-nm wavelength region,” Opt. Lett. 28(9), 707–709 (2003). [CrossRef] [PubMed]
  9. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007). [CrossRef] [PubMed]
  10. M. B. Nasr, O. Minaeva, G. N. Goltsman, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors,” Opt. Express 16(19), 15104–15108 (2008). [CrossRef] [PubMed]
  11. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33(16), 1365–1367 (1997). [CrossRef]
  12. Y. Takahashi, Y. Watanabe, and M. Sato, “Application of the maximum entropy method to spectral-domain optical coherence tomography for enhancing axial resolution,” Appl. Opt. 46(22), 5228–5236 (2007). [CrossRef] [PubMed]
  13. J. Gong, B. Liu, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express 14(13), 5909–5915 (2006). [CrossRef] [PubMed]
  14. S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomography by chirped quasi-phase matching,” Opt. Lett. 29(20), 2429–2431 (2004). [CrossRef] [PubMed]
  15. J. D. Taylor, Ultra wideband radar technology, (CRC press LLC, 2001), Chap. 11.
  16. T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in medical ultrasound. Part I: Basic concepts and expected benefits,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 177–191 (2005). [CrossRef] [PubMed]
  17. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998). [CrossRef]
  18. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009). [CrossRef]
  19. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–753 (1974). [CrossRef]
  20. A. Kartakoullis, E. Bousi, and C. Pitris, “Scatterer size-based analysis of optical coherence tomography images using spectral estimation techniques,” Opt. Express 18(9), 9181–9191 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited